These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35066453)

  • 41. Examining the Temporal and Spatial Models of China's Circular Economy Based upon Detailed Data of E-Plastic Recycling.
    Qi Y; Gong R; Zeng X; Wang J
    Int J Environ Res Public Health; 2022 Feb; 19(5):. PubMed ID: 35270502
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A model for estimation of potential generation of waste electrical and electronic equipment in Brazil.
    Araújo MG; Magrini A; Mahler CF; Bilitewski B
    Waste Manag; 2012 Feb; 32(2):335-42. PubMed ID: 22014584
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Waste paper recycling decision system based on material flow analysis and life cycle assessment: A case study of waste paper recycling from China.
    Liu M; Tan S; Zhang M; He G; Chen Z; Fu Z; Luan C
    J Environ Manage; 2020 Feb; 255():109859. PubMed ID: 32063319
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Forecasting waste compositions: A case study on plastic waste of electronic display housings.
    Peeters JR; Vanegas P; Kellens K; Wang F; Huisman J; Dewulf W; Duflou JR
    Waste Manag; 2015 Dec; 46():28-39. PubMed ID: 26431677
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Food waste and its embedded resources loss: A provincial level analysis of China.
    Niu Z; Ng SJ; Li B; Han J; Wu X; Huang Y
    Sci Total Environ; 2022 Jun; 823():153665. PubMed ID: 35131249
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Polybrominated diphenyl ethers in surface soils from e-waste recycling areas and industrial areas in South China: concentration levels, congener profile, and inventory.
    Gao S; Hong J; Yu Z; Wang J; Yang G; Sheng G; Fu J
    Environ Toxicol Chem; 2011 Dec; 30(12):2688-96. PubMed ID: 21882231
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Polybrominated diphenyl ethers in e-waste: level and transfer in a typical e-waste recycling site in Shanghai, Eastern China.
    Li Y; Duan YP; Huang F; Yang J; Xiang N; Meng XZ; Chen L
    Waste Manag; 2014 Jun; 34(6):1059-65. PubMed ID: 24090830
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recycling of engineering plastics from waste electrical and electronic equipments: influence of virgin polycarbonate and impact modifier on the final performance of blends.
    Ramesh V; Biswal M; Mohanty S; Nayak SK
    Waste Manag Res; 2014 May; 32(5):379-88. PubMed ID: 24695435
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Towards Holistic Governance of China's E-Waste Recycling: Evolution of Networked Policies.
    Yang X; Miao X; Wu J; Duan Z; Yang R; Tang Y
    Int J Environ Res Public Health; 2020 Oct; 17(20):. PubMed ID: 33053709
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Waste electrical and electronic equipment management in the educational institutions and governmental sector offices of Addis Ababa, Ethiopia.
    Kitila AW; Woldemikael SM
    Waste Manag; 2019 Feb; 85():30-41. PubMed ID: 30803584
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Global E-waste management: Can WEEE make a difference? A review of e-waste trends, legislation, contemporary issues and future challenges.
    Shittu OS; Williams ID; Shaw PJ
    Waste Manag; 2021 Feb; 120():549-563. PubMed ID: 33308953
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Present status of recycling waste mobile phones in China: a review.
    Li J; Ge Z; Liang C; An N
    Environ Sci Pollut Res Int; 2017 Jul; 24(20):16578-16591. PubMed ID: 28555392
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Status of electronic waste recycling techniques: a review.
    Abdelbasir SM; Hassan SSM; Kamel AH; El-Nasr RS
    Environ Sci Pollut Res Int; 2018 Jun; 25(17):16533-16547. PubMed ID: 29737485
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Estimating the benefits of increasing the recycling rate of lamps from the domestic sector: Methodology, opportunities and case study.
    Grigoropoulos CJ; Doulos LT; Zerefos SC; Tsangrassoulis A; Bhusal P
    Waste Manag; 2020 Jan; 101():188-199. PubMed ID: 31622864
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Out with the old, out with the new--The effect of transitions in TVs and monitors technology on consumption and WEEE generation in Sweden 1996-2014.
    Kalmykova Y; Patrício J; Rosado L; Berg PE
    Waste Manag; 2015 Dec; 46():511-22. PubMed ID: 26376121
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Environmental pollution and human body burden from improper recycling of e-waste in China: A short-review.
    Awasthi AK; Wang M; Awasthi MK; Wang Z; Li J
    Environ Pollut; 2018 Dec; 243(Pt B):1310-1316. PubMed ID: 30268981
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sustaining WEEE collection business in China: The case of online to offline (O2O) development strategies.
    Zuo L; Wang C; Sun Q
    Waste Manag; 2020 Jan; 101():222-230. PubMed ID: 31627086
    [TBL] [Abstract][Full Text] [Related]  

  • 58. E-waste management and resources recovery in France.
    Vadoudi K; Kim J; Laratte B; Lee SJ; Troussier N
    Waste Manag Res; 2015 Oct; 33(10):919-29. PubMed ID: 26283311
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Potential reuse of small household waste electrical and electronic equipment: Methodology and case study.
    Bovea MD; Ibáñez-Forés V; Pérez-Belis V; Quemades-Beltrán P
    Waste Manag; 2016 Jul; 53():204-17. PubMed ID: 27033992
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Requirement analysis to promote small-sized E-waste collection from consumers.
    Mishima K; Nishimura H
    Waste Manag Res; 2016 Feb; 34(2):122-8. PubMed ID: 26608902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.