BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35066597)

  • 1. Neuroprotective effect of aldose reductase knockout in a mouse model of spinal cord injury involves NF-κB pathway.
    Han FX; Zhang R; Yang XX; Ma SB; Hu SJ; Li B
    Exp Brain Res; 2022 Mar; 240(3):853-859. PubMed ID: 35066597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aldose Reductase Regulates Microglia/Macrophages Polarization Through the cAMP Response Element-Binding Protein After Spinal Cord Injury in Mice.
    Zhang Q; Bian G; Chen P; Liu L; Yu C; Liu F; Xue Q; Chung SK; Song B; Ju G; Wang J
    Mol Neurobiol; 2016 Jan; 53(1):662-676. PubMed ID: 25520004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aldose reductase mediates the lipopolysaccharide-induced release of inflammatory mediators in RAW264.7 murine macrophages.
    Ramana KV; Fadl AA; Tammali R; Reddy AB; Chopra AK; Srivastava SK
    J Biol Chem; 2006 Nov; 281(44):33019-29. PubMed ID: 16956889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmed death 1 deficiency induces the polarization of macrophages/microglia to the M1 phenotype after spinal cord injury in mice.
    Yao A; Liu F; Chen K; Tang L; Liu L; Zhang K; Yu C; Bian G; Guo H; Zheng J; Cheng P; Ju G; Wang J
    Neurotherapeutics; 2014 Jul; 11(3):636-50. PubMed ID: 24853068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-neuroinflammatory efficacy of the aldose reductase inhibitor FMHM via phospholipase C/protein kinase C-dependent NF-κB and MAPK pathways.
    Zeng KW; Li J; Dong X; Wang YH; Ma ZZ; Jiang Y; Jin HW; Tu PF
    Toxicol Appl Pharmacol; 2013 Nov; 273(1):159-71. PubMed ID: 24021941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aldose reductase deficiency inhibits LPS-induced M1 response in macrophages by activating autophagy.
    Cheng P; Xie J; Liu Z; Wang J
    Cell Biosci; 2021 Mar; 11(1):61. PubMed ID: 33771228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dl-3-n-butylphthalide attenuates acute inflammatory activation in rats with spinal cord injury by inhibiting microglial TLR4/NF-κB signalling.
    He Z; Zhou Y; Lin L; Wang Q; Khor S; Mao Y; Li J; Zhen Z; Chen J; Gao Z; Wu F; Zhang X; Zhang H; Xu HZ; Wang Z; Xiao J
    J Cell Mol Med; 2017 Nov; 21(11):3010-3022. PubMed ID: 28842949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Agonist of the Protective Factor SIRT1 Improves Functional Recovery and Promotes Neuronal Survival by Attenuating Inflammation after Spinal Cord Injury.
    Chen H; Ji H; Zhang M; Liu Z; Lao L; Deng C; Chen J; Zhong G
    J Neurosci; 2017 Mar; 37(11):2916-2930. PubMed ID: 28193684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Valproic acid attenuates traumatic spinal cord injury-induced inflammation via STAT1 and NF-κB pathway dependent of HDAC3.
    Chen S; Ye J; Chen X; Shi J; Wu W; Lin W; Lin W; Li Y; Fu H; Li S
    J Neuroinflammation; 2018 May; 15(1):150. PubMed ID: 29776446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Curcumin Alleviates Lipopolysaccharide (LPS)-Activated Neuroinflammation via Modulation of miR-199b-5p/IκB Kinase β (IKKβ)/Nuclear Factor Kappa B (NF-κB) Pathway in Microglia.
    Gao F; Shen J; Zhao L; Hao Q; Yang Y
    Med Sci Monit; 2019 Dec; 25():9801-9810. PubMed ID: 31862869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecto-5'-nucleotidase (CD73) attenuates inflammation after spinal cord injury by promoting macrophages/microglia M2 polarization in mice.
    Xu S; Zhu W; Shao M; Zhang F; Guo J; Xu H; Jiang J; Ma X; Xia X; Zhi X; Zhou P; Lu F
    J Neuroinflammation; 2018 May; 15(1):155. PubMed ID: 29788960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MiR-100 suppresses inflammatory activation of microglia and neuronal apoptosis following spinal cord injury via TLR4/NF-κB pathway.
    Li XH; Fu NS; Xing ZM
    Eur Rev Med Pharmacol Sci; 2019 Oct; 23(20):8713-8720. PubMed ID: 31696457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sting is a critical regulator of spinal cord injury by regulating microglial inflammation via interacting with TBK1 in mice.
    Wang YY; Shen D; Zhao LJ; Zeng N; Hu TH
    Biochem Biophys Res Commun; 2019 Oct; 517(4):741-748. PubMed ID: 31400857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photobiomodulation Attenuates Neurotoxic Polarization of Macrophages by Inhibiting the Notch1-HIF-1α/NF-κB Signalling Pathway in Mice With Spinal Cord Injury.
    Ma Y; Li P; Ju C; Zuo X; Li X; Ding T; Liang Z; Zhang J; Li K; Wang X; Zhu Z; Zhang Z; Song Z; Quan H; Hu X; Wang Z
    Front Immunol; 2022; 13():816952. PubMed ID: 35371065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autophagy exerts a protective role in cervical spinal cord injury by microglia inhibition through the nuclear factor kappa-B pathway.
    Yang B; Yang X
    Folia Morphol (Warsz); 2024; 83(1):113-124. PubMed ID: 37183514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Butein inhibits NF-κB activation and reduces infiltration of inflammatory cells and apoptosis after spinal cord injury in rats.
    Lu M; Wang S; Han X; Lv D
    Neurosci Lett; 2013 May; 542():87-91. PubMed ID: 23499960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Traumatic spinal cord injury induces nuclear factor-kappaB activation.
    Bethea JR; Castro M; Keane RW; Lee TT; Dietrich WD; Yezierski RP
    J Neurosci; 1998 May; 18(9):3251-60. PubMed ID: 9547234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury.
    Liu Z; Yao X; Jiang W; Li W; Zhu S; Liao C; Zou L; Ding R; Chen J
    J Neuroinflammation; 2020 Mar; 17(1):90. PubMed ID: 32192500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc deficiency impairs axonal regeneration and functional recovery after spinal cord injury by modulating macrophage polarization via NF-κB pathway.
    Kijima K; Ono G; Kobayakawa K; Saiwai H; Hara M; Yoshizaki S; Yokota K; Saito T; Tamaru T; Iura H; Haruta Y; Kitade K; Utsunomiya T; Konno D; Edgerton VR; Liu CY; Sakai H; Maeda T; Kawaguchi K; Matsumoto Y; Okada S; Nakashima Y
    Front Immunol; 2023; 14():1290100. PubMed ID: 38022538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroprotective effects of nitidine against traumatic CNS injury via inhibiting microglia activation.
    Yuan Y; Zhu F; Pu Y; Wang D; Huang A; Hu X; Qin S; Sun X; Su Z; He C
    Brain Behav Immun; 2015 Aug; 48():287-300. PubMed ID: 25900440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.