These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 35066633)

  • 1. The diagnostic performance of ultrasound computer-aided diagnosis system for distinguishing breast masses: a prospective multicenter study.
    Wei Q; Yan YJ; Wu GG; Ye XR; Jiang F; Liu J; Wang G; Wang Y; Song J; Pan ZP; Hu JH; Jin CY; Wang X; Dietrich CF; Cui XW
    Eur Radiol; 2022 Jun; 32(6):4046-4055. PubMed ID: 35066633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning-Based Computer-Aided Diagnosis for Breast Lesion Classification on Ultrasound: A Prospective Multicenter Study of Radiologists Without Breast Ultrasound Expertise.
    He P; Chen W; Bai MY; Li J; Wang QQ; Fan LH; Zheng J; Liu CT; Zhang XR; Yuan XR; Song PJ; Cui LG
    AJR Am J Roentgenol; 2023 Oct; 221(4):450-459. PubMed ID: 37222275
    [No Abstract]   [Full Text] [Related]  

  • 3. Downgrading Breast Imaging Reporting and Data System categories in ultrasound using strain elastography and computer-aided diagnosis system: a multicenter, prospective study.
    Du Y; Ma J; Wu T; Li F; Pan J; Du L; Zhang M; Diao X; Wu R
    Br J Radiol; 2024 Oct; 97(1162):1653-1660. PubMed ID: 39102827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical Application of Computer-Aided Diagnosis System in Breast Ultrasound: A Prospective Multicenter Study.
    He P; Chen W; Bai MY; Li J; Wang QQ; Fan LH; Zheng J; Liu CT; Zhang XR; Yuan XR; Song PJ; Cui LG
    World J Surg; 2023 Dec; 47(12):3205-3213. PubMed ID: 37805926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of breast masses on ultrasound: Added value for the inexperienced breast radiologist.
    Park HJ; Kim SM; La Yun B; Jang M; Kim B; Jang JY; Lee JY; Lee SH
    Medicine (Baltimore); 2019 Jan; 98(3):e14146. PubMed ID: 30653149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diagnostic Performance of Artificial Intelligence-Based Computer-Aided Detection Software for Automated Breast Ultrasound.
    Kwon MR; Youn I; Lee MY; Lee HA
    Acad Radiol; 2024 Feb; 31(2):480-491. PubMed ID: 37813703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer aided classification system for breast ultrasound based on Breast Imaging Reporting and Data System (BI-RADS).
    Shen WC; Chang RF; Moon WK
    Ultrasound Med Biol; 2007 Nov; 33(11):1688-98. PubMed ID: 17681678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the effect of computer aided diagnosis system on breast ultrasound for inexperienced radiologists in describing and determining breast lesions.
    Lee J; Kim S; Kang BJ; Kim SH; Park GE
    Med Ultrason; 2019 Aug; 21(3):239-245. PubMed ID: 31476202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of a Deep Learning Framework-Based Computer-Aided Diagnosis System on the Diagnostic Performance of Radiologists in Differentiating between Malignant and Benign Masses on Breast Ultrasonography.
    Choi JS; Han BK; Ko ES; Bae JM; Ko EY; Song SH; Kwon MR; Shin JH; Hahn SY
    Korean J Radiol; 2019 May; 20(5):749-758. PubMed ID: 30993926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Value of inversion imaging to diagnosis in differentiating malignant from benign breast masses.
    Li N; Hou Z; Wang J; Bi Y; Wu X; Zhan Y; Peng M
    BMC Med Imaging; 2023 Dec; 23(1):206. PubMed ID: 38066441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative ultrasound analysis for classification of BI-RADS category 3 breast masses.
    Moon WK; Lo CM; Chang JM; Huang CS; Chen JH; Chang RF
    J Digit Imaging; 2013 Dec; 26(6):1091-8. PubMed ID: 23494603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning-based computer-aided diagnosis in screening breast ultrasound to reduce false-positive diagnoses.
    Kim S-; Choi Y; Kim E-; Han BK; Yoon JH; Choi JS; Chang JM
    Sci Rep; 2021 Jan; 11(1):395. PubMed ID: 33432076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Added Value of a Computer-Aided Diagnosis System in Differential Diagnosis of Breast Lesions by Radiologists With Different Experience.
    Wei Q; Zeng SE; Wang LP; Yan YJ; Wang T; Xu JW; Zhang MY; Lv WZ; Dietrich CF; Cui XW
    J Ultrasound Med; 2022 Jun; 41(6):1355-1363. PubMed ID: 34432320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial Intelligence in BI-RADS Categorization of Breast Lesions on Ultrasound: Can We Omit Excessive Follow-ups and Biopsies?
    Guldogan N; Taskin F; Icten GE; Yilmaz E; Turk EB; Erdemli S; Parlakkilic UT; Turkoglu O; Aribal E
    Acad Radiol; 2024 Jun; 31(6):2194-2202. PubMed ID: 38087719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Downgrading and Upgrading Gray-Scale Ultrasound BI-RADS Categories of Benign and Malignant Masses With Optoacoustics: A Pilot Study.
    Neuschler EI; Lavin PT; Tucker FL; Barke LD; Bertrand ML; Böhm-Vélez M; Destounis S; Dogan BE; Grobmyer SR; Katzen J; Kist KA; Makariou EV; Parris TM; Young CA; Butler R
    AJR Am J Roentgenol; 2018 Sep; 211(3):689-700. PubMed ID: 29975115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A case-oriented web-based training system for breast cancer diagnosis.
    Huang Q; Huang X; Liu L; Lin Y; Long X; Li X
    Comput Methods Programs Biomed; 2018 Mar; 156():73-83. PubMed ID: 29428078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagnostic Value of Breast Lesions Between Deep Learning-Based Computer-Aided Diagnosis System and Experienced Radiologists: Comparison the Performance Between Symptomatic and Asymptomatic Patients.
    Xiao M; Zhao C; Li J; Zhang J; Liu H; Wang M; Ouyang Y; Zhang Y; Jiang Y; Zhu Q
    Front Oncol; 2020; 10():1070. PubMed ID: 32733799
    [No Abstract]   [Full Text] [Related]  

  • 18. Prospective study of AI-assisted prediction of breast malignancies in physical health examinations: role of off-the-shelf AI software and comparison to radiologist performance.
    Ma S; Li Y; Yin J; Niu Q; An Z; Du L; Li F; Gu J
    Front Oncol; 2024; 14():1374278. PubMed ID: 38756651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of computer-aided diagnosis in breast ultrasonography: Improvement in diagnostic performance of inexperienced radiologists.
    Nicosia L; Addante F; Bozzini AC; Latronico A; Montesano M; Meneghetti L; Tettamanzi F; Frassoni S; Bagnardi V; De Santis R; Pesapane F; Fodor CI; Mastropasqua MG; Cassano E
    Clin Imaging; 2022 Feb; 82():150-155. PubMed ID: 34826773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound-based deep learning in the establishment of a breast lesion risk stratification system: a multicenter study.
    Gu Y; Xu W; Liu T; An X; Tian J; Ran H; Ren W; Chang C; Yuan J; Kang C; Deng Y; Wang H; Luo B; Guo S; Zhou Q; Xue E; Zhan W; Zhou Q; Li J; Zhou P; Chen M; Gu Y; Chen W; Zhang Y; Li J; Cong L; Zhu L; Wang H; Jiang Y
    Eur Radiol; 2023 Apr; 33(4):2954-2964. PubMed ID: 36418619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.