These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Differentiating benign from malignant solid breast masses: value of shear wave elastography according to lesion stiffness combined with greyscale ultrasound according to BI-RADS classification. Evans A; Whelehan P; Thomson K; Brauer K; Jordan L; Purdie C; McLean D; Baker L; Vinnicombe S; Thompson A Br J Cancer; 2012 Jul; 107(2):224-9. PubMed ID: 22691969 [TBL] [Abstract][Full Text] [Related]
43. Comparison of 3D and 2D shear-wave elastography for differentiating benign and malignant breast masses: focus on the diagnostic performance. Choi HY; Sohn YM; Seo M Clin Radiol; 2017 Oct; 72(10):878-886. PubMed ID: 28526455 [TBL] [Abstract][Full Text] [Related]
44. Reducing the number of unnecessary biopsies of US-BI-RADS 4a lesions through a deep learning method for residents-in-training: a cross-sectional study. Zhao C; Xiao M; Liu H; Wang M; Wang H; Zhang J; Jiang Y; Zhu Q BMJ Open; 2020 Jun; 10(6):e035757. PubMed ID: 32513885 [TBL] [Abstract][Full Text] [Related]
45. Application of deep learning to establish a diagnostic model of breast lesions using two-dimensional grayscale ultrasound imaging. Zhang N; Li XT; Ma L; Fan ZQ; Sun YS Clin Imaging; 2021 Nov; 79():56-63. PubMed ID: 33887507 [TBL] [Abstract][Full Text] [Related]
46. Principal component regression-based contrast-enhanced ultrasound evaluation system for the management of BI-RADS US 4A breast masses: objective assistance for radiologists. Lin ZM; Chen JF; Xu FT; Liu CM; Chen JS; Wang Y; Zhang C; Huang PT Ultrasound Med Biol; 2021 Jul; 47(7):1737-1746. PubMed ID: 33838937 [TBL] [Abstract][Full Text] [Related]
47. Application of Artificial Intelligence Computer-Assisted Diagnosis Originally Developed for Thyroid Nodules to Breast Lesions on Ultrasound. Lee SE; Lee E; Kim EK; Yoon JH; Park VY; Youk JH; Kwak JY J Digit Imaging; 2022 Dec; 35(6):1699-1707. PubMed ID: 35902445 [TBL] [Abstract][Full Text] [Related]
48. Evaluation of the Quadri-Planes Method in Computer-Aided Diagnosis of Breast Lesions by Ultrasonography: Prospective Single-Center Study. Yongping L; Juan Z; Zhou P; Yongfeng Z; Liu W; Shi Y JMIR Med Inform; 2020 May; 8(5):e18251. PubMed ID: 32369039 [TBL] [Abstract][Full Text] [Related]
49. Can a Computer-Aided Mass Diagnosis Model Based on Perceptive Features Learned From Quantitative Mammography Radiology Reports Improve Junior Radiologists' Diagnosis Performance? An Observer Study. He Z; Li Y; Zeng W; Xu W; Liu J; Ma X; Wei J; Zeng H; Xu Z; Wang S; Wen C; Wu J; Feng C; Ma M; Qin G; Lu Y; Chen W Front Oncol; 2021; 11():773389. PubMed ID: 34976817 [TBL] [Abstract][Full Text] [Related]
50. Value of Contrast-Enhanced Microflow Imaging in Diagnosis of Breast Masses in Comparison with Contrast-Enhanced Ultrasound. Luo R; Wang Q; Zhang Y; Jiang W; Wang Y; Luo Y Acad Radiol; 2024 Jun; 31(6):2217-2227. PubMed ID: 38065749 [TBL] [Abstract][Full Text] [Related]
51. The value of contrast-enhanced ultrasound in the diagnosis of BI-RADS-US 4a lesions less than 2 cm in diameter. Yu MQ; Zhang LL; Jiang LP; Zhou AY Clin Hemorheol Microcirc; 2023; 83(3):195-205. PubMed ID: 35599475 [TBL] [Abstract][Full Text] [Related]
52. 99mTc-Glu-c(RGDyK)-Bombesin SPECT Can Reduce Unnecessary Biopsy of Masses That Are BI-RADS Category 4 on Ultrasonography. Ji T; Gao S; Liu Z; Xing H; Zhao G; Ma Q J Nucl Med; 2016 Aug; 57(8):1196-200. PubMed ID: 27013698 [TBL] [Abstract][Full Text] [Related]
53. Downgrading of Breast Masses Suspicious for Cancer by Using Optoacoustic Breast Imaging. Menezes GLG; Pijnappel RM; Meeuwis C; Bisschops R; Veltman J; Lavin PT; van de Vijver MJ; Mann RM Radiology; 2018 Aug; 288(2):355-365. PubMed ID: 29664342 [TBL] [Abstract][Full Text] [Related]
54. Investigating the diagnostic efficiency of a computer-aided diagnosis system for thyroid nodules in the context of Hashimoto's thyroiditis. Gong L; Zhou P; Li JL; Liu WG Front Oncol; 2022; 12():941673. PubMed ID: 36686823 [TBL] [Abstract][Full Text] [Related]
55. Malignant and benign breast masses on 3D US volumetric images: effect of computer-aided diagnosis on radiologist accuracy. Sahiner B; Chan HP; Roubidoux MA; Hadjiiski LM; Helvie MA; Paramagul C; Bailey J; Nees AV; Blane C Radiology; 2007 Mar; 242(3):716-24. PubMed ID: 17244717 [TBL] [Abstract][Full Text] [Related]
56. Computer-aided diagnosis based on quantitative elastographic features with supersonic shear wave imaging. Xiao Y; Zeng J; Niu L; Zeng Q; Wu T; Wang C; Zheng R; Zheng H Ultrasound Med Biol; 2014 Feb; 40(2):275-86. PubMed ID: 24268454 [TBL] [Abstract][Full Text] [Related]
57. A combined ultrasonic B-mode and color Doppler system for the classification of breast masses using neural network. Qian X; Zhang B; Liu S; Wang Y; Chen X; Liu J; Yang Y; Chen X; Wei Y; Xiao Q; Ma J; Shung KK; Zhou Q; Liu L; Chen Z Eur Radiol; 2020 May; 30(5):3023-3033. PubMed ID: 32006174 [TBL] [Abstract][Full Text] [Related]
58. Novel approach in the evaluation of ultrasound BI-RADS 3 & 4 breast masses with a combination method of elastography & Doppler. Reghunath A; Mittal MK; Chintamani C; Prasad R Indian J Med Res; 2021 Aug; 154(2):355-366. PubMed ID: 34854427 [TBL] [Abstract][Full Text] [Related]
59. Evaluation of the accuracy of a computer-aided diagnosis (CAD) system in breast ultrasound according to the radiologist's experience. Chabi ML; Borget I; Ardiles R; Aboud G; Boussouar S; Vilar V; Dromain C; Balleyguier C Acad Radiol; 2012 Mar; 19(3):311-9. PubMed ID: 22310523 [TBL] [Abstract][Full Text] [Related]