BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35067120)

  • 1. Bioactive polyacetylenes from
    Yan Z; Chen Z; Zhang L; Wang X; Zhang Y; Tian Z
    Nat Prod Res; 2022 Dec; 36(24):6353-6358. PubMed ID: 35067120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new dihydroflavone and a new polyacetylene glucoside from
    Cai FJ; Li CH; Sun XH; Wang L; Tian JL; Zhao W; Kong DG; Liu Q; Zhou HL
    J Asian Nat Prod Res; 2022 Oct; 24(10):963-970. PubMed ID: 34747287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of chemical constituents in Bidens pilosa Linn. var. radiata Sch. Bip. by elution-extrusion counter-current chromatography using two new three-phase solvent systems.
    Chen Z; Tian Z; Zhang Y; Wang X; Xu J; Li Y; Jiang H; Su B
    J Sep Sci; 2021 Oct; 44(19):3540-3550. PubMed ID: 34329528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-Inflammatory Constituents from Bidens frondosa.
    Le J; Lu W; Xiong X; Wu Z; Chen W
    Molecules; 2015 Oct; 20(10):18496-510. PubMed ID: 26473814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antihyperglycemic acetylenic glucosides from Bidens pilosa.
    Ubillas RP; Mendez CD; Jolad SD; Luo J; King SR; Carlson TJ; Fort DM
    Planta Med; 2000 Feb; 66(1):82-3. PubMed ID: 10705745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compilation of secondary metabolites from Bidens pilosa L.
    Silva FL; Fischer DC; Tavares JF; Silva MS; de Athayde-Filho PF; Barbosa-Filho JM
    Molecules; 2011 Jan; 16(2):1070-102. PubMed ID: 21270729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytopiloyne, a novel polyacetylenic glucoside from Bidens pilosa, functions as a T helper cell modulator.
    Chiang YM; Chang CL; Chang SL; Yang WC; Shyur LF
    J Ethnopharmacol; 2007 Apr; 110(3):532-8. PubMed ID: 17101254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyacetylenic compounds and butanol fraction from Bidens pilosa can modulate the differentiation of helper T cells and prevent autoimmune diabetes in non-obese diabetic mice.
    Chang SL; Chang CL; Chiang YM; Hsieh RH; Tzeng CR; Wu TK; Sytwu HK; Shyur LF; Yang WC
    Planta Med; 2004 Nov; 70(11):1045-51. PubMed ID: 15549660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidation of enzymes involved in the biosynthetic pathway of bioactive polyacetylenes in Bidens pilosa using integrated omics approaches.
    Chung HH; Ting HM; Wang WH; Chao YT; Hsieh CH; Apaya MK; Sung YC; Lin SS; Hwu FY; Shyur LF
    J Exp Bot; 2021 Feb; 72(2):525-541. PubMed ID: 33063830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioactive polyacetylenes from Bidens pilosa.
    Alvarez L; Marquina S; Villarreal ML; Alonso D; Aranda E; Delgado G
    Planta Med; 1996 Aug; 62(4):355-7. PubMed ID: 8792670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyacetylene Isomers Isolated from
    Cai J; Shi SY; Cheng F; Wei M; Zou K; Yu XQ; Chen JF
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The first total synthesis of cytopiloyne, an anti-diabetic, polyacetylenic glucoside.
    Kumar CR; Tsai CH; Chao YS; Lee JC
    Chemistry; 2011 Jul; 17(31):8696-703. PubMed ID: 21681841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyacetylenes function as anti-angiogenic agents.
    Wu LW; Chiang YM; Chuang HC; Wang SY; Yang GW; Chen YH; Lai LY; Shyur LF
    Pharm Res; 2004 Nov; 21(11):2112-9. PubMed ID: 15587935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytopiloyne, a polyacetylenic glucoside from Bidens pilosa, acts as a novel anticandidal agent via regulation of macrophages.
    Chung CY; Yang WC; Liang CL; Liu HY; Lai SK; Chang CL
    J Ethnopharmacol; 2016 May; 184():72-80. PubMed ID: 26924565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyacetylene glucosides from the florets of Carthamus tinctorius and their anti-inflammatory activity.
    Li XR; Liu J; Peng C; Zhou QM; Liu F; Guo L; Xiong L
    Phytochemistry; 2021 Jul; 187():112770. PubMed ID: 33873017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-Inflammatory Activity and Mechanism of Isookanin, Isolated by Bioassay-Guided Fractionation from
    Xin YJ; Choi S; Roh KB; Cho E; Ji H; Weon JB; Park D; Whang WK; Jung E
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33419109
    [No Abstract]   [Full Text] [Related]  

  • 17. Anti-diabetic properties of three common Bidens pilosa variants in Taiwan.
    Chien SC; Young PH; Hsu YJ; Chen CH; Tien YJ; Shiu SY; Li TH; Yang CW; Marimuthu P; Tsai LF; Yang WC
    Phytochemistry; 2009 Jul; 70(10):1246-54. PubMed ID: 19683775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyacetylenes from the roots of Cirsium japonicum var. ussuriense.
    Lee SH; Kim JG; Le TPL; Han JS; Cho YB; Lee MK; Lee D; Hwang BY
    Phytochemistry; 2022 Oct; 202():113319. PubMed ID: 35850259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemistry and pharmacology of
    Xuan TD; Khanh TD
    J Pharm Investig; 2016; 46(2):91-132. PubMed ID: 32226639
    [No Abstract]   [Full Text] [Related]  

  • 20. Thiophenes, polyacetylenes and terpenes from the aerial parts of Eclipata prostrate.
    Xi FM; Li CT; Han J; Yu SS; Wu ZJ; Chen WS
    Bioorg Med Chem; 2014 Nov; 22(22):6515-22. PubMed ID: 25443644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.