These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 35067570)

  • 21. Talker Adaptation and Lexical Difficulty Impact Word Recognition in Adults with Cochlear Implants.
    Tamati TN; Moberly AC
    Audiol Neurootol; 2022; 27(3):260-270. PubMed ID: 34535583
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cognitive processes underlying spoken word recognition during soft speech.
    Hendrickson K; Spinelli J; Walker E
    Cognition; 2020 May; 198():104196. PubMed ID: 32004934
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Within- and across-frequency temporal processing and speech perception in cochlear implant users.
    Blankenship CM; Meinzen-Derr J; Zhang F
    PLoS One; 2022; 17(10):e0275772. PubMed ID: 36227872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Some considerations in evaluating spoken word recognition by normal-hearing, noise-masked normal-hearing, and cochlear implant listeners. I: The effects of response format.
    Sommers MS; Kirk KI; Pisoni DB
    Ear Hear; 1997 Apr; 18(2):89-99. PubMed ID: 9099558
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Examination of the neighborhood activation theory in normal and hearing-impaired listeners.
    Dirks DD; Takayanagi S; Moshfegh A; Noffsinger PD; Fausti SA
    Ear Hear; 2001 Feb; 22(1):1-13. PubMed ID: 11271971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Children With Cochlear Implants Use Semantic Prediction to Facilitate Spoken Word Recognition.
    Blomquist C; Newman RS; Huang YT; Edwards J
    J Speech Lang Hear Res; 2021 May; 64(5):1636-1649. PubMed ID: 33887149
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Listeners' perception of lexical stress in the first words of infants with cochlear implants and normally hearing infants.
    De Clerck I; Verhoeven J; Gillis S; Pettinato M; Gillis S
    J Commun Disord; 2019; 80():52-65. PubMed ID: 31078023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Age-Related Changes in Voice Emotion Recognition by Postlingually Deafened Listeners With Cochlear Implants.
    Cannon SA; Chatterjee M
    Ear Hear; 2022; 43(2):323-334. PubMed ID: 34406157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonverbal Reasoning as a Contributor to Sentence Recognition Outcomes in Adults With Cochlear Implants.
    Mattingly JK; Castellanos I; Moberly AC
    Otol Neurotol; 2018 Dec; 39(10):e956-e963. PubMed ID: 30444843
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of stimulus modality, task complexity, and cuing on working memory and the relationship with speech recognition in older cochlear implant users.
    Luo X; Azuma T; Kolberg C; Pulling KR
    J Commun Disord; 2022; 95():106170. PubMed ID: 34839068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Perception of lexical stress cued by low-frequency pitch and insights into speech perception in noise for cochlear implant users and normal hearing adults.
    Dincer D'Alessandro H; Mancini P
    Eur Arch Otorhinolaryngol; 2019 Oct; 276(10):2673-2680. PubMed ID: 31177325
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Acoustics of Word-Initial Fricatives and Their Effect on Word-Level Intelligibility in Children With Bilateral Cochlear Implants.
    Reidy PF; Kristensen K; Winn MB; Litovsky RY; Edwards JR
    Ear Hear; 2017; 38(1):42-56. PubMed ID: 27556521
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The timecourse of multisensory speech processing in unilaterally stimulated cochlear implant users revealed by ERPs.
    Layer N; Weglage A; Müller V; Meister H; Lang-Roth R; Walger M; Murray MM; Sandmann P
    Neuroimage Clin; 2022; 34():102982. PubMed ID: 35303598
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cognitive Functions in Adult Cochlear Implant Users, Cochlear Implant Candidates, and Normal-Hearing Listeners.
    Kramer S; Vasil KJ; Adunka OF; Pisoni DB; Moberly AC
    Laryngoscope Investig Otolaryngol; 2018 Aug; 3(4):304-310. PubMed ID: 30186962
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feasibility of real-time selection of frequency tables in an acoustic simulation of a cochlear implant.
    Fitzgerald MB; Sagi E; Morbiwala TA; Tan CT; Svirsky MA
    Ear Hear; 2013; 34(6):763-72. PubMed ID: 23807089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Auditory Discrimination of Lexical Stress Patterns in Hearing-Impaired Infants with Cochlear Implants Compared with Normal Hearing: Influence of Acoustic Cues and Listening Experience to the Ambient Language.
    Segal O; Houston D; Kishon-Rabin L
    Ear Hear; 2016; 37(2):225-34. PubMed ID: 26627470
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Meta-Analysis on the Identification of Linguistic and Emotional Prosody in Cochlear Implant Users and Vocoder Simulations.
    Everhardt MK; Sarampalis A; Coler M; Başkent D; Lowie W
    Ear Hear; 2020; 41(5):1092-1102. PubMed ID: 32251011
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visual Temporal Acuity Is Related to Auditory Speech Perception Abilities in Cochlear Implant Users.
    Jahn KN; Stevenson RA; Wallace MT
    Ear Hear; 2017; 38(2):236-243. PubMed ID: 27764001
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strategic perceptual weighting of acoustic cues for word stress in listeners with cochlear implants, acoustic hearing, or simulated bimodal hearing.
    Fleming JT; Winn MB
    J Acoust Soc Am; 2022 Sep; 152(3):1300. PubMed ID: 36182279
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recognition of Accented Speech by Cochlear-Implant Listeners: Benefit of Audiovisual Cues.
    Waddington E; Jaekel BN; Tinnemore AR; Gordon-Salant S; Goupell MJ
    Ear Hear; 2020; 41(5):1236-1250. PubMed ID: 32069269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.