These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35068606)

  • 21. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect.
    Mishra D; Kim DJ; Ralph DE; Ahn JG; Rhee YH
    J Hazard Mater; 2008 Apr; 152(3):1082-91. PubMed ID: 17825485
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bio-dissolution of Ni, V and Mo from spent petroleum catalyst using iron oxidizing bacteria.
    Pradhan D; Kim DJ; Roychaudhury G; Lee SW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(4):476-82. PubMed ID: 20390893
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioleaching in batch tests for improving sludge dewaterability and metal removal using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans after cold acclimation.
    Zhou Q; Gao J; Li Y; Zhu S; He L; Nie W; Zhang R
    Water Sci Technol; 2017 Sep; 76(5-6):1347-1359. PubMed ID: 28953461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger.
    Aung KM; Ting YP
    J Biotechnol; 2005 Mar; 116(2):159-70. PubMed ID: 15664080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans.
    Mishra D; Kim DJ; Ralph DE; Ahn JG; Rhee YH
    Waste Manag; 2008; 28(2):333-8. PubMed ID: 17376665
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metal recovery from spent refinery catalysts by means of biotechnological strategies.
    Beolchini F; Fonti V; Ferella F; Vegliò F
    J Hazard Mater; 2010 Jun; 178(1-3):529-34. PubMed ID: 20167424
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetics of Ni, V and Fe Leaching from a Spent Catalyst in Microwave-Assisted Acid Activation Process.
    Wang T; Ren J; Ravindra AV; Lv Y; Le T
    Molecules; 2022 Mar; 27(7):. PubMed ID: 35408477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of ferrous iron loading on dewaterability, heavy metal removal and bacterial community of digested sludge by Acidithiobacillus ferrooxidans.
    Cai G; Ebrahimi M; Zheng G; Kaksonen AH; Morris C; O'Hara IM; Zhang Z
    J Environ Manage; 2021 Oct; 295():113114. PubMed ID: 34171779
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.
    Kim HI; Park KH; Mishra D
    J Hazard Mater; 2009 Jul; 166(2-3):1540-4. PubMed ID: 19121897
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fungal leaching of valuable metals from a power plant residual ash using Penicillium simplicissimum: Evaluation of thermal pretreatment and different bioleaching methods.
    Rasoulnia P; Mousavi SM; Rastegar SO; Azargoshasb H
    Waste Manag; 2016 Jun; 52():309-17. PubMed ID: 27095291
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation of Acidithiobacillus ferrooxidans in pure and mixed-species culture for bioleaching of Theisen sludge from former copper smelting.
    Klink C; Eisen S; Daus B; Heim J; Schlömann M; Schopf S
    J Appl Microbiol; 2016 Jun; 120(6):1520-30. PubMed ID: 27005888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation behavior of extracellular polymeric substances and its correlation with extraction efficiency of valuable metals and change of process parameters during bioleaching of spent petroleum catalyst.
    Chu H; Wang J; Tian B; Qian C; Niu T; Qi S; Yang Y; Ge Y; Dai X; Xin B
    Chemosphere; 2021 Jul; 275():130006. PubMed ID: 33639548
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of H2SO4 and ferric iron on Cd bioleaching from spent Ni-Cd batteries.
    Velgosová O; Kaduková J; Marcinčáková R; Palfy P; Trpčevská J
    Waste Manag; 2013 Feb; 33(2):456-61. PubMed ID: 23131752
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a novel chelation-based recycling strategy for the efficient decontamination of hazardous petroleum refinery spent catalysts.
    Pathak A; Al-Sheeha H; Ali AA; Rana MS
    J Environ Manage; 2022 Nov; 322():116055. PubMed ID: 36041303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioleaching of Al from spent fluid catalytic cracking catalyst using Aspergillus species.
    Das S; Naik Deshavath N; Goud VV; Dasu VV
    Biotechnol Rep (Amst); 2019 Sep; 23():e00349. PubMed ID: 31194058
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of kinetics and operating parameters for the bioleaching of heavy metals from sewage sludge, using co-inoculation of two Acidithiobacillus species.
    Li H; Ye M; Zheng L; Xu Y; Sun S; Du Q; Zhong Y; Ye S; Zhang D
    Water Sci Technol; 2018 May; 2017(2):390-403. PubMed ID: 29851391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioleaching of metals from steel slag by Acidithiobacillus thiooxidans culture supernatant.
    Hocheng H; Su C; Jadhav UU
    Chemosphere; 2014 Dec; 117():652-7. PubMed ID: 25461931
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioleaching of the α-alumina layer of spent three-way catalysts as a pretreatment for the recovery of platinum group metals.
    Compagnone M; González-Cortés JJ; Yeste MDP; Cantero D; Ramírez M
    J Environ Manage; 2023 Nov; 345():118825. PubMed ID: 37634402
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Environmentally friendly recovery of valuable metals from spent coin cells through two-step bioleaching using Acidithiobacillus thiooxidans.
    Naseri T; Bahaloo-Horeh N; Mousavi SM
    J Environ Manage; 2019 Apr; 235():357-367. PubMed ID: 30708273
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of organic acids on pentlandite bioleaching by
    Giese EC
    3 Biotech; 2021 Apr; 11(4):165. PubMed ID: 33786282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.