These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 35068652)

  • 21. Seasonal dynamics and changing sea level as determinants of the community and trophic structure of oribatid mites in a salt marsh of the Wadden Sea.
    Winter M; Haynert K; Scheu S; Maraun M
    PLoS One; 2018; 13(11):e0207141. PubMed ID: 30408121
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise.
    Mariotti G; Fagherazzi S
    Proc Natl Acad Sci U S A; 2013 Apr; 110(14):5353-6. PubMed ID: 23513219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contrasting decadal-scale changes in elevation and vegetation in two Long Island Sound salt marshes.
    Carey JC; Raposa KB; Wigand C; Warren RS
    Estuaries Coast; 2017 May; 40(3):651-661. PubMed ID: 30008626
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High nutrient loads amplify carbon cycling across California and New York coastal wetlands but with ambiguous effects on marsh integrity and sustainability.
    Watson EB; Rahman FI; Woolfolk A; Meyer R; Maher N; Wigand C; Gray AB
    PLoS One; 2022; 17(9):e0273260. PubMed ID: 36084085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast.
    Armitage AR; Highfield WE; Brody SD; Louchouarn P
    PLoS One; 2015; 10(5):e0125404. PubMed ID: 25946132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimating mussel mound distribution and geometric properties in coastal salt marshes by using UAV-Lidar point clouds.
    Pinton D; Canestrelli A; Williams S; Angelini C; Wilkinson B
    Sci Total Environ; 2023 Jul; 883():163707. PubMed ID: 37105489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Geochemical properties of blue carbon sediments through an elevation gradient: study of an anthropogenically impacted coastal lagoon.
    Grey A; Costeira R; Lorenzo E; O'Kane S; McCaul MV; McCarthy T; Jordan SF; Allen CCR; Kelleher BP
    Biogeochemistry; 2023; 162(3):381-408. PubMed ID: 36873378
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mosquitoes associated with ditch-plugged and control tidal salt marshes on the Delmarva Peninsula.
    Leisnham PT; Sandoval-Mohapatra S
    Int J Environ Res Public Health; 2011 Aug; 8(8):3099-113. PubMed ID: 21909293
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Water sources of plant uptake along a salt marsh flooding gradient.
    Redelstein R; Coners H; Knohl A; Leuschner C
    Oecologia; 2018 Oct; 188(2):607-622. PubMed ID: 30051213
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tidal marsh plant responses to elevated CO2 , nitrogen fertilization, and sea level rise.
    Adam Langley J; Mozdzer TJ; Shepard KA; Hagerty SB; Patrick Megonigal J
    Glob Chang Biol; 2013 May; 19(5):1495-503. PubMed ID: 23504873
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Salt marsh restoration: an overview of techniques and success indicators.
    Billah MM; Bhuiyan MKA; Islam MA; Das J; Hoque AR
    Environ Sci Pollut Res Int; 2022 Mar; 29(11):15347-15363. PubMed ID: 34989993
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Short-term impact of sediment addition on plants and invertebrates in a southern California salt marsh.
    McAtee KJ; Thorne KM; Whitcraft CR
    PLoS One; 2020; 15(11):e0240597. PubMed ID: 33151998
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Upslope development of a tidal marsh as a function of upland land use.
    Anisfeld SC; Cooper KR; Kemp AC
    Glob Chang Biol; 2017 Feb; 23(2):755-766. PubMed ID: 27343840
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved mapping of coastal salt marsh habitat change at Barnegat Bay (NJ, USA) using object-based image analysis of high-resolution aerial imagery.
    Krause JR; Oczkowski AJ; Watson EB
    Remote Sens Appl; 2023 Jan; 29():1-11. PubMed ID: 37235064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic responses and implications to coastal wetlands and the surrounding regions under sea level rise.
    Alizad K; Hagen SC; Medeiros SC; Bilskie MV; Morris JT; Balthis L; Buckel CA
    PLoS One; 2018; 13(10):e0205176. PubMed ID: 30312304
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Salt marsh vegetation change during a half-century of experimental nutrient addition and climate-driven controls in Great Sippewissett Marsh.
    Valiela I; Chenoweth K; Lloret J; Teal J; Howes B; Goehringer Toner D
    Sci Total Environ; 2023 Apr; 867():161546. PubMed ID: 36634783
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Factors controlling sediment and nutrient fluxes in a small microtidal salt marsh within the Venice Lagoon.
    Bonometto A; Feola A; Rampazzo F; Gion C; Berto D; Ponis E; Boscolo Brusà R
    Sci Total Environ; 2019 Feb; 650(Pt 2):1832-1845. PubMed ID: 30286351
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Restoring Fringing Tidal Marshes for Ecological Function and Ecosystem Resilience to Moderate Sea-level Rise in the Northern Gulf of Mexico.
    Martin S; Sparks EL; Constantin AJ; Cebrian J; Cherry JA
    Environ Manage; 2021 Feb; 67(2):384-397. PubMed ID: 33432500
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of salt marsh mosquito populations by the 18.6-yr lunar-nodal cycle.
    Rochlin I; Morris JT
    Ecology; 2017 Aug; 98(8):2059-2068. PubMed ID: 28418218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Loss of 'blue carbon' from coastal salt marshes following habitat disturbance.
    Macreadie PI; Hughes AR; Kimbro DL
    PLoS One; 2013; 8(7):e69244. PubMed ID: 23861964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.