BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35069128)

  • 1. Fourier Motion Processing in the Optic Tectum and Pretectum of the Zebrafish Larva.
    Duchemin A; Privat M; Sumbre G
    Front Neural Circuits; 2021; 15():814128. PubMed ID: 35069128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel Channels for Motion Feature Extraction in the Pretectum and Tectum of Larval Zebrafish.
    Wang K; Hinz J; Zhang Y; Thiele TR; Arrenberg AB
    Cell Rep; 2020 Jan; 30(2):442-453.e6. PubMed ID: 31940488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective processing of all rotational and translational optic flow directions in the zebrafish pretectum and tectum.
    Wang K; Hinz J; Haikala V; Reiff DF; Arrenberg AB
    BMC Biol; 2019 Mar; 17(1):29. PubMed ID: 30925897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinotectal circuitry of larval zebrafish is adapted to detection and pursuit of prey.
    Förster D; Helmbrecht TO; Mearns DS; Jordan L; Mokayes N; Baier H
    Elife; 2020 Oct; 9():. PubMed ID: 33044168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direction selectivity in the visual system of the zebrafish larva.
    Gebhardt C; Baier H; Del Bene F
    Front Neural Circuits; 2013; 7():111. PubMed ID: 23785314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visuomotor behaviors in larval zebrafish after GFP-guided laser ablation of the optic tectum.
    Roeser T; Baier H
    J Neurosci; 2003 May; 23(9):3726-34. PubMed ID: 12736343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circuit Organization Underlying Optic Flow Processing in Zebrafish.
    Matsuda K; Kubo F
    Front Neural Circuits; 2021; 15():709048. PubMed ID: 34366797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Three-Layer Network Model of Direction Selective Circuits in the Optic Tectum.
    Abbas F; Triplett MA; Goodhill GJ; Meyer MP
    Front Neural Circuits; 2017; 11():88. PubMed ID: 29209178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring of single-cell responses in the optic tectum of adult zebrafish with dextran-coupled calcium dyes delivered via local electroporation.
    Kassing V; Engelmann J; Kurtz R
    PLoS One; 2013; 8(5):e62846. PubMed ID: 23667529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A robust receptive field code for optic flow detection and decomposition during self-motion.
    Zhang Y; Huang R; Nörenberg W; Arrenberg AB
    Curr Biol; 2022 Jun; 32(11):2505-2516.e8. PubMed ID: 35550724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Principles of Functional Circuit Connectivity: Insights From Spontaneous Activity in the Zebrafish Optic Tectum.
    Marachlian E; Avitan L; Goodhill GJ; Sumbre G
    Front Neural Circuits; 2018; 12():46. PubMed ID: 29977193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perception of Fourier and non-Fourier motion by larval zebrafish.
    Orger MB; Smear MC; Anstis SM; Baier H
    Nat Neurosci; 2000 Nov; 3(11):1128-33. PubMed ID: 11036270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Optical Illusion Pinpoints an Essential Circuit Node for Global Motion Processing.
    Wu Y; Dal Maschio M; Kubo F; Baier H
    Neuron; 2020 Nov; 108(4):722-734.e5. PubMed ID: 32966764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of optokinetic neuronal responses in the pretectum and horizontal optokinetic nystagmus in unilaterally enucleated rats.
    Reber A; Lannou J; Hess BJ
    Arch Ital Biol; 1989 Oct; 127(4):225-42. PubMed ID: 2604504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal response properties of direction-selective neurons in the nucleus of the optic tract and dorsal terminal nucleus of the wallaby, Macropus eugenii.
    Ibbotson MR; Mark RF; Maddess TL
    J Neurophysiol; 1994 Dec; 72(6):2927-43. PubMed ID: 7897500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dedicated visual pathway for prey detection in larval zebrafish.
    Semmelhack JL; Donovan JC; Thiele TR; Kuehn E; Laurell E; Baier H
    Elife; 2014 Dec; 3():. PubMed ID: 25490154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation-induced modification of motion selectivity tuning in visual tectal neurons of adult zebrafish.
    Hollmann V; Lucks V; Kurtz R; Engelmann J
    J Neurophysiol; 2015 Nov; 114(5):2893-902. PubMed ID: 26378206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel, continuous visual motion induces c-fos expression in the avian optokinetic nuclei and optic tectum.
    Rojas X; Marín G; Wallman J
    Neuroscience; 2009 May; 160(2):540-54. PubMed ID: 19217933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustained Rhythmic Brain Activity Underlies Visual Motion Perception in Zebrafish.
    Pérez-Schuster V; Kulkarni A; Nouvian M; Romano SA; Lygdas K; Jouary A; Dipoppa M; Pietri T; Haudrechy M; Candat V; Boulanger-Weill J; Hakim V; Sumbre G
    Cell Rep; 2016 Oct; 17(4):1098-1112. PubMed ID: 27760314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural connections of the pretectum in zebrafish (Danio rerio).
    Yáñez J; Suárez T; Quelle A; Folgueira M; Anadón R
    J Comp Neurol; 2018 Apr; 526(6):1017-1040. PubMed ID: 29292495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.