BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 35069263)

  • 41. Novel insights from spatial transcriptome analysis in solid tumors.
    Du J; An ZJ; Huang ZF; Yang YC; Zhang MH; Fu XH; Shi WY; Hou J
    Int J Biol Sci; 2023; 19(15):4778-4792. PubMed ID: 37781515
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dimension-agnostic and granularity-based spatially variable gene identification using BSP.
    Wang J; Li J; Kramer ST; Su L; Chang Y; Xu C; Eadon MT; Kiryluk K; Ma Q; Xu D
    Nat Commun; 2023 Nov; 14(1):7367. PubMed ID: 37963892
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deciphering the Spatial Modular Patterns of Tissues by Integrating Spatial and Single-Cell Transcriptomic Data.
    Shan X; Chen J; Dong K; Zhou W; Zhang S
    J Comput Biol; 2022 Jul; 29(7):650-663. PubMed ID: 35727094
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spatial Transcriptomics: Emerging Technologies in Tissue Gene Expression Profiling.
    Robles-Remacho A; Sanchez-Martin RM; Diaz-Mochon JJ
    Anal Chem; 2023 Oct; 95(42):15450-15460. PubMed ID: 37814884
    [TBL] [Abstract][Full Text] [Related]  

  • 45. SPIN-AI: A Deep Learning Model That Identifies Spatially Predictive Genes.
    Meng-Lin K; Ung CY; Zhang C; Weiskittel TM; Wisniewski P; Zhang Z; Tan SH; Yeo KS; Zhu S; Correia C; Li H
    Biomolecules; 2023 May; 13(6):. PubMed ID: 37371475
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spatial Transcriptomic Technologies.
    Chen TY; You L; Hardillo JAU; Chien MP
    Cells; 2023 Aug; 12(16):. PubMed ID: 37626852
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CellDART: cell type inference by domain adaptation of single-cell and spatial transcriptomic data.
    Bae S; Na KJ; Koh J; Lee DS; Choi H; Kim YT
    Nucleic Acids Res; 2022 Jun; 50(10):e57. PubMed ID: 35191503
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identifying spatial domains of spatially resolved transcriptomics via multi-view graph convolutional networks.
    Shi X; Zhu J; Long Y; Liang C
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37544658
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Imputation of spatially-resolved transcriptomes by graph-regularized tensor completion.
    Li Z; Song T; Yong J; Kuang R
    PLoS Comput Biol; 2021 Apr; 17(4):e1008218. PubMed ID: 33826608
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mapping Cellular Coordinates through Advances in Spatial Transcriptomics Technology.
    Teves JM; Won KJ
    Mol Cells; 2020 Jul; 43(7):591-599. PubMed ID: 32507771
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Slide-tags: scalable, single-nucleus barcoding for multi-modal spatial genomics.
    Russell AJC; Weir JA; Nadaf NM; Shabet M; Kumar V; Kambhampati S; Raichur R; Marrero GJ; Liu S; Balderrama KS; Vanderburg CR; Shanmugam V; Tian L; Wu CJ; Yoon CH; Macosko EZ; Chen F
    bioRxiv; 2023 Apr; ():. PubMed ID: 37066158
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spatially Resolved Transcriptomes of Mammalian Kidneys Illustrate the Molecular Complexity and Interactions of Functional Nephron Segments.
    Raghubar AM; Pham DT; Tan X; Grice LF; Crawford J; Lam PY; Andersen SB; Yoon S; Teoh SM; Matigian NA; Stewart A; Francis L; Ng MSY; Healy HG; Combes AN; Kassianos AJ; Nguyen Q; Mallett AJ
    Front Med (Lausanne); 2022; 9():873923. PubMed ID: 35872784
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spatially resolved transcriptomics: a comprehensive review of their technological advances, applications, and challenges.
    Cheng M; Jiang Y; Xu J; Mentis AA; Wang S; Zheng H; Sahu SK; Liu L; Xu X
    J Genet Genomics; 2023 Sep; 50(9):625-640. PubMed ID: 36990426
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spatial Transcriptomic Cell-type Deconvolution Using Graph Neural Networks.
    Li Y; Luo Y
    bioRxiv; 2023 Jun; ():. PubMed ID: 37333198
    [TBL] [Abstract][Full Text] [Related]  

  • 55. RETROFIT: Reference-free deconvolution of cell-type mixtures in spatial transcriptomics.
    Singh R; He X; Park AK; Hardison RC; Zhu X; Li Q
    bioRxiv; 2023 Jun; ():. PubMed ID: 37333291
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Slide-tags enables single-nucleus barcoding for multimodal spatial genomics.
    Russell AJC; Weir JA; Nadaf NM; Shabet M; Kumar V; Kambhampati S; Raichur R; Marrero GJ; Liu S; Balderrama KS; Vanderburg CR; Shanmugam V; Tian L; Iorgulescu JB; Yoon CH; Wu CJ; Macosko EZ; Chen F
    Nature; 2024 Jan; 625(7993):101-109. PubMed ID: 38093010
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Statistical Power Analysis for Designing Bulk, Single-Cell, and Spatial Transcriptomics Experiments: Review, Tutorial, and Perspectives.
    Jeon H; Xie J; Jeon Y; Jung KJ; Gupta A; Chang W; Chung D
    Biomolecules; 2023 Jan; 13(2):. PubMed ID: 36830591
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spatial molecular profiling: platforms, applications and analysis tools.
    Zhang M; Sheffield T; Zhan X; Li Q; Yang DM; Wang Y; Wang S; Xie Y; Wang T; Xiao G
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32770205
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Review of the Application of Spatial Transcriptomics in Neuroscience.
    Zhang L; Xiong Z; Xiao M
    Interdiscip Sci; 2024 Feb; ():. PubMed ID: 38374297
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Space: the final frontier - achieving single-cell, spatially resolved transcriptomics in plants.
    Gurazada SGR; Cox KL; Czymmek KJ; Meyers BC
    Emerg Top Life Sci; 2021 May; 5(2):179-188. PubMed ID: 33522561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.