These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 35069348)

  • 1. Supervised Classification of Operator Functional State Based on Physiological Data: Application to Drones Swarm Piloting.
    Kostenko A; Rauffet P; Coppin G
    Front Psychol; 2021; 12():770000. PubMed ID: 35069348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unsupervised Drones Swarm Characterization Using RF Signals Analysis and Machine Learning Methods.
    Ashush N; Greenberg S; Manor E; Ben-Shimol Y
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Mission-Oriented Flight Path and Charging Mechanism for Internet of Drones.
    Huang CJ; Hu KW; Cheng HW; Sie Lin YS
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine-Learning Based Monitoring of Cognitive Workload in Rescue Missions With Drones.
    DellrAgnola F; Jao PK; Arza A; Chavarriaga R; Millan JDR; Floreano D; Atienza D
    IEEE J Biomed Health Inform; 2022 Sep; 26(9):4751-4762. PubMed ID: 35759604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perceived difficulty, flight information access, and performance of male and female novice drone operators.
    Peng L; Li KW
    Work; 2022; 72(4):1259-1268. PubMed ID: 35754250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MBioTracker: Multimodal Self-Aware Bio-Monitoring Wearable System for Online Workload Detection.
    DellrAgnola F; Pale U; Marino R; Arza A; Atienza D
    IEEE Trans Biomed Circuits Syst; 2021 Oct; 15(5):994-1007. PubMed ID: 34495839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosignal-Based Attention Monitoring to Support Nuclear Operator Safety-Relevant Tasks.
    Kim JH; Kim CM; Jung ES; Yim MS
    Front Comput Neurosci; 2020; 14():596531. PubMed ID: 33408623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-Time Cognitive Workload Monitoring Based on Machine Learning Using Physiological Signals in Rescue Missions.
    Momeni N; Dell'Agnola F; Arza A; Atienza D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3779-3785. PubMed ID: 31946697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classifying human operator functional state based on electrophysiological and performance measures and fuzzy clustering method.
    Zhang JH; Peng XD; Liu H; Raisch J; Wang RB
    Cogn Neurodyn; 2013 Dec; 7(6):477-94. PubMed ID: 24427221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multivariate sensor signals collected by aquatic drones involved in water monitoring: A complete dataset.
    Castellini A; Bloisi D; Blum J; Masillo F; Farinelli A
    Data Brief; 2020 Jun; 30():105436. PubMed ID: 32258287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The human factor: does the operator performing the embryo transfer significantly impact the cycle outcome?
    Cirillo F; Patrizio P; Baccini M; Morenghi E; Ronchetti C; Cafaro L; Zannoni E; Baggiani A; Levi-Setti PE
    Hum Reprod; 2020 Feb; 35(2):275-282. PubMed ID: 32100020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Operator functional state classification using least-square support vector machine based recursive feature elimination technique.
    Yin Z; Zhang J
    Comput Methods Programs Biomed; 2014; 113(1):101-15. PubMed ID: 24138846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning-based analysis of operator pupillary response to assess cognitive workload in clinical ultrasound imaging.
    Sharma H; Drukker L; Papageorghiou AT; Noble JA
    Comput Biol Med; 2021 Aug; 135():104589. PubMed ID: 34198044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of temporal variations in mental workload using locally-linear-embedding-based EEG feature reduction and support-vector-machine-based clustering and classification techniques.
    Yin Z; Zhang J
    Comput Methods Programs Biomed; 2014 Jul; 115(3):119-34. PubMed ID: 24821400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pattern Classification of Instantaneous Cognitive Task-load Through GMM Clustering, Laplacian Eigenmap, and Ensemble SVMs.
    Zhang J; Yin Z; Wang R
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(4):947-965. PubMed ID: 27164601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Instantaneous mental workload assessment using time-frequency analysis and semi-supervised learning.
    Zhang J; Li J; Wang R
    Cogn Neurodyn; 2020 Oct; 14(5):619-642. PubMed ID: 33014177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of supervised machine learning algorithms in the classification of sagittal gait patterns of cerebral palsy children with spastic diplegia.
    Zhang Y; Ma Y
    Comput Biol Med; 2019 Mar; 106():33-39. PubMed ID: 30665140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Supervised Machine Learning Algorithms for Classifying of Home Discharge Possibility in Convalescent Stroke Patients: A Secondary Analysis.
    Imura T; Toda H; Iwamoto Y; Inagawa T; Imada N; Tanaka R; Inoue Y; Araki H; Araki O
    J Stroke Cerebrovasc Dis; 2021 Oct; 30(10):106011. PubMed ID: 34325274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning Methods in Computational Toxicology.
    Baskin II
    Methods Mol Biol; 2018; 1800():119-139. PubMed ID: 29934890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical brain monitoring for operator training and mental workload assessment.
    Ayaz H; Shewokis PA; Bunce S; Izzetoglu K; Willems B; Onaral B
    Neuroimage; 2012 Jan; 59(1):36-47. PubMed ID: 21722738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.