These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 35069586)

  • 1. The Role of m6A Epigenetic Modification in the Treatment of Colorectal Cancer Immune Checkpoint Inhibitors.
    Tong H; Wei H; Smith AO; Huang J
    Front Immunol; 2021; 12():802049. PubMed ID: 35069586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles and therapeutic implications of m6A modification in cancer immunotherapy.
    Pan J; Huang T; Deng Z; Zou C
    Front Immunol; 2023; 14():1132601. PubMed ID: 36960074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting N6-methyladenosine RNA modification combined with immune checkpoint Inhibitors: A new approach for cancer therapy.
    Liu W; Liu C; Wang H; Xu L; Zhou J; Li S; Cheng Y; Zhou R; Zhao L
    Comput Struct Biotechnol J; 2022; 20():5150-5161. PubMed ID: 36187919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How to overcome resistance to immune checkpoint inhibitors in colorectal cancer: From mechanisms to translation.
    Wang Q; Shen X; Chen G; Du J
    Int J Cancer; 2023 Aug; 153(4):709-722. PubMed ID: 36752642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The regulation of N6-methyladenosine modification in PD-L1-induced anti-tumor immunity.
    Yu W; Lin J; Yu T; Lou J; Qian C; Xu A; Liu B; Tao H; Jin L
    Immunol Cell Biol; 2023 Mar; 101(3):204-215. PubMed ID: 36630591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetics modulates the complexity of the response to Immune Checkpoint Blockade.
    Barragan I
    EBioMedicine; 2020 Oct; 60():103005. PubMed ID: 32987318
    [No Abstract]   [Full Text] [Related]  

  • 7. Natural Killer Cells: The Linchpin for Successful Cancer Immunotherapy.
    Shaver KA; Croom-Perez TJ; Copik AJ
    Front Immunol; 2021; 12():679117. PubMed ID: 33995422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N6-methyladenosine RNA modification and its interaction with regulatory non-coding RNAs in colorectal cancer.
    Ge Y; Liu T; Wang C; Zhang Y; Xu S; Ren Y; Feng Y; Yin L; Pu Y; Liang G
    RNA Biol; 2021 Nov; 18(sup2):551-561. PubMed ID: 34674600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prognostic Significance of Immune Checkpoints HLA-G/ILT-2/4 and PD-L1 in Colorectal Cancer.
    Chen QY; Chen YX; Han QY; Zhang JG; Zhou WJ; Zhang X; Ye YH; Yan WH; Lin A
    Front Immunol; 2021; 12():679090. PubMed ID: 34054869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hiding in the dark: pan-cancer characterization of expression and clinical relevance of CD40 to immune checkpoint blockade therapy.
    Yan C; Richmond A
    Mol Cancer; 2021 Nov; 20(1):146. PubMed ID: 34758832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N6-methyladenosine RNA modification in PD-1/PD-L1: Novel implications for immunotherapy.
    Luo P; Li S; Long X
    Biochim Biophys Acta Rev Cancer; 2023 May; 1878(3):188873. PubMed ID: 36842764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crosstalk Between the MSI Status and Tumor Microenvironment in Colorectal Cancer.
    Lin A; Zhang J; Luo P
    Front Immunol; 2020; 11():2039. PubMed ID: 32903444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N6-Methyladenosine-Related lncRNA Signature Predicts the Overall Survival of Colorectal Cancer Patients.
    Song W; Ren J; Yuan W; Xiang R; Ge Y; Fu T
    Genes (Basel); 2021 Aug; 12(9):. PubMed ID: 34573357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Immune Checkpoint Inhibitors in the Treatment of Cholangiocarcinoma.
    Zeng FL; Chen JF
    Technol Cancer Res Treat; 2021; 20():15330338211039952. PubMed ID: 34528830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors Determining Long-Term Antitumor Responses to Immune Checkpoint Blockade Therapy in Melanoma.
    Loo K; Smithy JW; Postow MA; Betof Warner A
    Front Immunol; 2021; 12():810388. PubMed ID: 35087529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinformatic analyses and experimental validation of the role of m6A RNA methylation regulators in progression and prognosis of adrenocortical carcinoma.
    Xu F; Guan Y; Ma Y; Xue L; Zhang P; Yang X; Chong T
    Aging (Albany NY); 2021 Apr; 13(8):11919-11941. PubMed ID: 33952721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surmounting cancer drug resistance: New insights from the perspective of N
    Li B; Jiang J; Assaraf YG; Xiao H; Chen ZS; Huang C
    Drug Resist Updat; 2020 Dec; 53():100720. PubMed ID: 32892147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA hypomethylation patterns and their impact on the tumor microenvironment in colorectal cancer.
    Huang H; Li Q; Tu X; Yu D; Zhou Y; Ma L; Wei K; Gao Y; Zhao G; Han R; Ye F; Ke C
    Cell Oncol (Dordr); 2024 Aug; 47(4):1375-1389. PubMed ID: 38520647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomarkers to predict efficacy of immune checkpoint inhibitors in colorectal cancer patients: a systematic review and meta-analysis.
    Yu H; Liu Q; Wu K; Tang S
    Clin Exp Med; 2024 Jul; 24(1):143. PubMed ID: 38960935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. T-cell immunoglobulin and ITIM domain, as a potential immune checkpoint target for immunotherapy of colorectal cancer.
    Fathi M; Pustokhina I; Kuznetsov SV; Khayrullin M; Hojjat-Farsangi M; Karpisheh V; Jalili A; Jadidi-Niaragh F
    IUBMB Life; 2021 May; 73(5):726-738. PubMed ID: 33686787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.