BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 35069586)

  • 1. The Role of m6A Epigenetic Modification in the Treatment of Colorectal Cancer Immune Checkpoint Inhibitors.
    Tong H; Wei H; Smith AO; Huang J
    Front Immunol; 2021; 12():802049. PubMed ID: 35069586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles and therapeutic implications of m6A modification in cancer immunotherapy.
    Pan J; Huang T; Deng Z; Zou C
    Front Immunol; 2023; 14():1132601. PubMed ID: 36960074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting N6-methyladenosine RNA modification combined with immune checkpoint Inhibitors: A new approach for cancer therapy.
    Liu W; Liu C; Wang H; Xu L; Zhou J; Li S; Cheng Y; Zhou R; Zhao L
    Comput Struct Biotechnol J; 2022; 20():5150-5161. PubMed ID: 36187919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How to overcome resistance to immune checkpoint inhibitors in colorectal cancer: From mechanisms to translation.
    Wang Q; Shen X; Chen G; Du J
    Int J Cancer; 2023 Aug; 153(4):709-722. PubMed ID: 36752642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The regulation of N6-methyladenosine modification in PD-L1-induced anti-tumor immunity.
    Yu W; Lin J; Yu T; Lou J; Qian C; Xu A; Liu B; Tao H; Jin L
    Immunol Cell Biol; 2023 Mar; 101(3):204-215. PubMed ID: 36630591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetics modulates the complexity of the response to Immune Checkpoint Blockade.
    Barragan I
    EBioMedicine; 2020 Oct; 60():103005. PubMed ID: 32987318
    [No Abstract]   [Full Text] [Related]  

  • 7. Factors Determining Long-Term Antitumor Responses to Immune Checkpoint Blockade Therapy in Melanoma.
    Loo K; Smithy JW; Postow MA; Betof Warner A
    Front Immunol; 2021; 12():810388. PubMed ID: 35087529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural Killer Cells: The Linchpin for Successful Cancer Immunotherapy.
    Shaver KA; Croom-Perez TJ; Copik AJ
    Front Immunol; 2021; 12():679117. PubMed ID: 33995422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N6-methyladenosine RNA modification and its interaction with regulatory non-coding RNAs in colorectal cancer.
    Ge Y; Liu T; Wang C; Zhang Y; Xu S; Ren Y; Feng Y; Yin L; Pu Y; Liang G
    RNA Biol; 2021 Nov; 18(sup2):551-561. PubMed ID: 34674600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prognostic Significance of Immune Checkpoints HLA-G/ILT-2/4 and PD-L1 in Colorectal Cancer.
    Chen QY; Chen YX; Han QY; Zhang JG; Zhou WJ; Zhang X; Ye YH; Yan WH; Lin A
    Front Immunol; 2021; 12():679090. PubMed ID: 34054869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hiding in the dark: pan-cancer characterization of expression and clinical relevance of CD40 to immune checkpoint blockade therapy.
    Yan C; Richmond A
    Mol Cancer; 2021 Nov; 20(1):146. PubMed ID: 34758832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N6-methyladenosine RNA modification in PD-1/PD-L1: Novel implications for immunotherapy.
    Luo P; Li S; Long X
    Biochim Biophys Acta Rev Cancer; 2023 May; 1878(3):188873. PubMed ID: 36842764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crosstalk Between the MSI Status and Tumor Microenvironment in Colorectal Cancer.
    Lin A; Zhang J; Luo P
    Front Immunol; 2020; 11():2039. PubMed ID: 32903444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N6-Methyladenosine-Related lncRNA Signature Predicts the Overall Survival of Colorectal Cancer Patients.
    Song W; Ren J; Yuan W; Xiang R; Ge Y; Fu T
    Genes (Basel); 2021 Aug; 12(9):. PubMed ID: 34573357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Immune Checkpoint Inhibitors in the Treatment of Cholangiocarcinoma.
    Zeng FL; Chen JF
    Technol Cancer Res Treat; 2021; 20():15330338211039952. PubMed ID: 34528830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinformatic analyses and experimental validation of the role of m6A RNA methylation regulators in progression and prognosis of adrenocortical carcinoma.
    Xu F; Guan Y; Ma Y; Xue L; Zhang P; Yang X; Chong T
    Aging (Albany NY); 2021 Apr; 13(8):11919-11941. PubMed ID: 33952721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surmounting cancer drug resistance: New insights from the perspective of N
    Li B; Jiang J; Assaraf YG; Xiao H; Chen ZS; Huang C
    Drug Resist Updat; 2020 Dec; 53():100720. PubMed ID: 32892147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advancing immune checkpoint blockade in colorectal cancer therapy with nanotechnology.
    Liu Z; Xiang Y; Zheng Y; Kang X
    Front Immunol; 2022; 13():1027124. PubMed ID: 36341334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. T-cell immunoglobulin and ITIM domain, as a potential immune checkpoint target for immunotherapy of colorectal cancer.
    Fathi M; Pustokhina I; Kuznetsov SV; Khayrullin M; Hojjat-Farsangi M; Karpisheh V; Jalili A; Jadidi-Niaragh F
    IUBMB Life; 2021 May; 73(5):726-738. PubMed ID: 33686787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the m6A-Associated Tumor Immune Microenvironment in Prostate Cancer to Aid Immunotherapy.
    Liu Z; Zhong J; Zeng J; Duan X; Lu J; Sun X; Liu Q; Liang Y; Lin Z; Zhong W; Wu W; Cai C; Zeng G
    Front Immunol; 2021; 12():735170. PubMed ID: 34531875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.