BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35069595)

  • 21. PMN-MDSC and arginase are increased in myeloma and may contribute to resistance to therapy.
    Romano A; Parrinello NL; La Cava P; Tibullo D; Giallongo C; Camiolo G; Puglisi F; Parisi M; Pirosa MC; Martino E; Conticello C; Palumbo GA; Di Raimondo F
    Expert Rev Mol Diagn; 2018 Jul; 18(7):675-683. PubMed ID: 29707981
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Circulating PD-L1 levels change during bevacizumab-based treatment in recurrent glioma.
    Mair MJ; Ilhan-Mutlu A; Pajenda S; Kiesel B; Wöhrer A; Widhalm G; Dieckmann K; Marosi C; Wagner L; Preusser M; Berghoff AS
    Cancer Immunol Immunother; 2021 Dec; 70(12):3643-3650. PubMed ID: 33956203
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ACT001 reduces the expression of PD-L1 by inhibiting the phosphorylation of STAT3 in glioblastoma.
    Tong L; Li J; Li Q; Wang X; Medikonda R; Zhao T; Li T; Ma H; Yi L; Liu P; Xie Y; Choi J; Yu S; Lin Y; Dong J; Huang Q; Jin X; Lim M; Yang X
    Theranostics; 2020; 10(13):5943-5956. PubMed ID: 32483429
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties.
    Rodrigues JC; Gonzalez GC; Zhang L; Ibrahim G; Kelly JJ; Gustafson MP; Lin Y; Dietz AB; Forsyth PA; Yong VW; Parney IF
    Neuro Oncol; 2010 Apr; 12(4):351-65. PubMed ID: 20308313
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increased level of myeloid-derived suppressor cells, programmed death receptor ligand 1/programmed death receptor 1, and soluble CD25 in Sokal high risk chronic myeloid leukemia.
    Christiansson L; Söderlund S; Svensson E; Mustjoki S; Bengtsson M; Simonsson B; Olsson-Strömberg U; Loskog AS
    PLoS One; 2013; 8(1):e55818. PubMed ID: 23383287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CD14
    Bernsmeier C; Triantafyllou E; Brenig R; Lebosse FJ; Singanayagam A; Patel VC; Pop OT; Khamri W; Nathwani R; Tidswell R; Weston CJ; Adams DH; Thursz MR; Wendon JA; Antoniades CG
    Gut; 2018 Jun; 67(6):1155-1167. PubMed ID: 28592438
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GM-CSF promotes the immunosuppressive activity of glioma-infiltrating myeloid cells through interleukin-4 receptor-α.
    Kohanbash G; McKaveney K; Sakaki M; Ueda R; Mintz AH; Amankulor N; Fujita M; Ohlfest JR; Okada H
    Cancer Res; 2013 Nov; 73(21):6413-23. PubMed ID: 24030977
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of Spatial Organization of Suppressive Myeloid Cells and Effector T Cells in Colorectal Cancer-A Potential Tool for Discovering Prognostic Biomarkers in Clinical Research.
    Zwing N; Failmezger H; Ooi CH; Hibar DP; Cañamero M; Gomes B; Gaire F; Korski K
    Front Immunol; 2020; 11():550250. PubMed ID: 33193316
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrative Analysis of Neuregulin Family Members-Related Tumor Microenvironment for Predicting the Prognosis in Gliomas.
    Zhao WJ; Ou GY; Lin WW
    Front Immunol; 2021; 12():682415. PubMed ID: 34054873
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Early Expansion of Circulating Granulocytic Myeloid-derived Suppressor Cells Predicts Development of Nosocomial Infections in Patients with Sepsis.
    Uhel F; Azzaoui I; Grégoire M; Pangault C; Dulong J; Tadié JM; Gacouin A; Camus C; Cynober L; Fest T; Le Tulzo Y; Roussel M; Tarte K
    Am J Respir Crit Care Med; 2017 Aug; 196(3):315-327. PubMed ID: 28146645
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Correlation between circulating myeloid-derived suppressor cells and Th17 cells in esophageal cancer.
    Jiao ZJ; Gao JJ; Hua SH; Chen DY; Wang WH; Wang H; Wang XH; Xu HX
    World J Gastroenterol; 2012 Oct; 18(38):5454-61. PubMed ID: 23082063
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells.
    Hoechst B; Ormandy LA; Ballmaier M; Lehner F; Krüger C; Manns MP; Greten TF; Korangy F
    Gastroenterology; 2008 Jul; 135(1):234-43. PubMed ID: 18485901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CD200 promotes immunosuppression in the pancreatic tumor microenvironment.
    Choueiry F; Torok M; Shakya R; Agrawal K; Deems A; Benner B; Hinton A; Shaffer J; Blaser BW; Noonan AM; Williams TM; Dillhoff M; Conwell DL; Hart PA; Cruz-Monserrate Z; Bai XF; Carson WE; Mace TA
    J Immunother Cancer; 2020 Jun; 8(1):. PubMed ID: 32581043
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expansion of PMN-myeloid derived suppressor cells and their clinical relevance in patients with oral squamous cell carcinoma.
    Zhong LM; Liu ZG; Zhou X; Song SH; Weng GY; Wen Y; Liu FB; Cao DL; Liu YF
    Oral Oncol; 2019 Aug; 95():157-163. PubMed ID: 31345384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Epithelial-to-mesenchymal Transition Heterogeneity of Circulating Tumor Cells and Their Correlation With MDSCs and Tregs in HER2-negative Metastatic Breast Cancer Patients.
    Papadaki MA; Aggouraki D; Vetsika EK; Xenidis N; Kallergi G; Kotsakis A; Georgoulias V
    Anticancer Res; 2021 Feb; 41(2):661-670. PubMed ID: 33517270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Programmed Death-Ligand 1 Expression Potentiates the Immune Modulatory Function Of Myeloid-Derived Suppressor Cells in Systemic Lupus Erythematosus.
    Park MJ; Baek JA; Choi JW; Jang SG; Kim DS; Park SH; Cho ML; Kwok SK
    Front Immunol; 2021; 12():606024. PubMed ID: 33986739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Early Activation of Myeloid-Derived Suppressor Cells Participate in Sepsis-Induced Immune Suppression via PD-L1/PD-1 Axis.
    Ruan WS; Feng MX; Xu J; Xu YG; Song CY; Lin LY; Li L; Lu YQ
    Front Immunol; 2020; 11():1299. PubMed ID: 32719675
    [No Abstract]   [Full Text] [Related]  

  • 38. Germline polymorphisms in myeloid-associated genes are not associated with survival in glioma patients.
    Jacobs DI; Liu Y; Gabrusiewicz K; Tsavachidis S; Armstrong GN; Zhou R; Wei J; Ivan C; Calin G; Molinaro AM; Rice T; Bracci PM; Hansen HM; Wiencke JK; Wrensch MR; Heimberger AB; Bondy ML
    J Neurooncol; 2018 Jan; 136(1):33-39. PubMed ID: 28965162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New Insights into the Multifaceted Role of Myeloid-Derived Suppressor Cells (MDSCs) in High-Grade Gliomas: From Metabolic Reprograming, Immunosuppression, and Therapeutic Resistance to Current Strategies for Targeting MDSCs.
    Lakshmanachetty S; Cruz-Cruz J; Hoffmeyer E; Cole AP; Mitra SS
    Cells; 2021 Apr; 10(4):. PubMed ID: 33919732
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Myeloid-Derived Suppressor Cells as an Immune Parameter in Patients with Concurrent Sunitinib and Stereotactic Body Radiotherapy.
    Chen HM; Ma G; Gildener-Leapman N; Eisenstein S; Coakley BA; Ozao J; Mandeli J; Divino C; Schwartz M; Sung M; Ferris R; Kao J; Wang LH; Pan PY; Ko EC; Chen SH
    Clin Cancer Res; 2015 Sep; 21(18):4073-4085. PubMed ID: 25922428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.