These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 35070732)

  • 1. A fermentation process for the production of poly(3-hydroxybutyrate) using waste cooking oil or waste fish oil as inexpensive carbon substrate.
    Loan TT; Trang DTQ; Huy PQ; Ninh PX; Van Thuoc D
    Biotechnol Rep (Amst); 2022 Mar; 33():e00700. PubMed ID: 35070732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of different nutrient limitation strategies for the efficient production of poly(hydroxybutyrate-co-hydroxyvalerate) from waste frying oil and propionic acid in high cell density fermentations of
    Kökpınar Ö; Altun M
    Prep Biochem Biotechnol; 2023; 53(5):532-541. PubMed ID: 36007876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates.
    Obruca S; Petrik S; Benesova P; Svoboda Z; Eremka L; Marova I
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):5883-90. PubMed ID: 24652066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of poly(3-hydroxybutyrate) (PHB) by Cupriavidus necator H16 from jatropha oil as carbon source.
    Batcha AF; Prasad DM; Khan MR; Abdullah H
    Bioprocess Biosyst Eng; 2014 May; 37(5):943-51. PubMed ID: 24078185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chicken feather hydrolysate as an inexpensive complex nitrogen source for PHA production by Cupriavidus necator on waste frying oils.
    Benesova P; Kucera D; Marova I; Obruca S
    Lett Appl Microbiol; 2017 Aug; 65(2):182-188. PubMed ID: 28585326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats.
    Riedel SL; Jahns S; Koenig S; Bock MC; Brigham CJ; Bader J; Stahl U
    J Biotechnol; 2015 Nov; 214():119-27. PubMed ID: 26428087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate.
    Obruca S; Marova I; Snajdar O; Mravcova L; Svoboda Z
    Biotechnol Lett; 2010 Dec; 32(12):1925-32. PubMed ID: 20814716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PHB production from food waste hydrolysates by Halomonas bluephagenesis Harboring PHB operon linked with an essential gene.
    Ji M; Zheng T; Wang Z; Lai W; Zhang L; Zhang Q; Yang H; Meng S; Xu W; Zhao C; Wu Q; Chen GQ
    Metab Eng; 2023 May; 77():12-20. PubMed ID: 36889504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of waste fish oil and glycerol as carbon sources for polyhydroxyalkanoate production by Salinivibrio sp. M318.
    Van Thuoc D; My DN; Loan TT; Sudesh K
    Int J Biol Macromol; 2019 Dec; 141():885-892. PubMed ID: 31513855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved fermentation strategies in a bioreactor for enhancing poly(3-hydroxybutyrate) (PHB) production by wild type
    Nygaard D; Yashchuk O; Noseda DG; Araoz B; Hermida ÉB
    Heliyon; 2021 Jan; 7(1):e05979. PubMed ID: 33537471
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Gutschmann B; Schiewe T; Weiske MTH; Neubauer P; Hass R; Riedel SL
    Bioengineering (Basel); 2019 Sep; 6(3):. PubMed ID: 31546779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator.
    Verlinden RA; Hill DJ; Kenward MA; Williams CD; Piotrowska-Seget Z; Radecka IK
    AMB Express; 2011 Jun; 1(1):11. PubMed ID: 21906352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon source pulsed feeding to attain high yield and high productivity in poly(3-hydroxybutyrate) (PHB) production from soybean oil using Cupriavidus necator.
    Pradella JG; Ienczak JL; Delgado CR; Taciro MK
    Biotechnol Lett; 2012 Jun; 34(6):1003-7. PubMed ID: 22315097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necator.
    Obruca S; Benesova P; Oborna J; Marova I
    Biotechnol Lett; 2014 Apr; 36(4):775-81. PubMed ID: 24243232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(3-hydroxybutyrate) production from glycerol by Zobellella denitrificans MW1 via high-cell-density fed-batch fermentation and simplified solvent extraction.
    Ibrahim MH; Steinbüchel A
    Appl Environ Microbiol; 2009 Oct; 75(19):6222-31. PubMed ID: 19666728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyhydroxybutyrate (PHB) Production Using an Arabinose-Inducible Expression System in Comparison With Cold Shock Inducible Expression System in
    Napathorn SC; Visetkoop S; Pinyakong O; Okano K; Honda K
    Front Bioeng Biotechnol; 2021; 9():661096. PubMed ID: 34012957
    [No Abstract]   [Full Text] [Related]  

  • 17. Global changes in the proteome of Cupriavidus necator H16 during poly-(3-hydroxybutyrate) synthesis from various biodiesel by-product substrates.
    Sharma PK; Fu J; Spicer V; Krokhin OV; Cicek N; Sparling R; Levin DB
    AMB Express; 2016 Dec; 6(1):36. PubMed ID: 27184362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study on de novo and ex novo lipid fermentation by oleaginous yeast using glucose and sonicated waste cooking oil.
    Patel A; Matsakas L
    Ultrason Sonochem; 2019 Apr; 52():364-374. PubMed ID: 30559080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced PHB fermentation strategies with CO
    Vlaeminck E; Quataert K; Uitterhaegen E; De Winter K; Soetaert WK
    J Biotechnol; 2022 Jan; 343():102-109. PubMed ID: 34863773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico optimization and low structured kinetic model of poly[(R)-3-hydroxybutyrate] synthesis by Cupriavidus necator DSM 545 by fed-batch cultivation on glycerol.
    Spoljarić IV; Lopar M; Koller M; Muhr A; Salerno A; Reiterer A; Horvat P
    J Biotechnol; 2013 Dec; 168(4):625-35. PubMed ID: 24001933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.