These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 35071405)
1. Identification of key genes associated with esophageal adenocarcinoma based on bioinformatics analysis. Qi W; Li R; Li L; Li S; Zhang H; Tian H Ann Transl Med; 2021 Dec; 9(23):1711. PubMed ID: 35071405 [TBL] [Abstract][Full Text] [Related]
2. Integrated PPI- and WGCNA-Retrieval of Hub Gene Signatures Shared Between Barrett's Esophagus and Esophageal Adenocarcinoma. Nangraj AS; Selvaraj G; Kaliamurthi S; Kaushik AC; Cho WC; Wei DQ Front Pharmacol; 2020; 11():881. PubMed ID: 32903837 [TBL] [Abstract][Full Text] [Related]
3. Biomarker identification and trans-regulatory network analyses in esophageal adenocarcinoma and Barrett's esophagus. Lv J; Guo L; Wang JH; Yan YZ; Zhang J; Wang YY; Yu Y; Huang YF; Zhao HP World J Gastroenterol; 2019 Jan; 25(2):233-244. PubMed ID: 30670912 [TBL] [Abstract][Full Text] [Related]
4. Development and Validation of a Prognostic Model for Esophageal Adenocarcinoma Based on Necroptosis-Related Genes. Zhang S; Liu S; Lin Z; Zhang J; Lin Z; Fang H; Hu Z Genes (Basel); 2022 Nov; 13(12):. PubMed ID: 36553511 [TBL] [Abstract][Full Text] [Related]
5. Development and validation of a survival model for esophageal adenocarcinoma based on autophagy-associated genes. Duan L; Cao L; Zhang R; Niu L; Yang W; Feng W; Zhou W; Chen J; Wang X; Li Y; Zhang Y; Liu J; Zhao Q; Fan D; Hong L Bioengineered; 2021 Dec; 12(1):3434-3454. PubMed ID: 34252349 [TBL] [Abstract][Full Text] [Related]
6. Identification of genes and pathways in esophageal adenocarcinoma using bioinformatics analysis. He F; Ai B; Tian L Biomed Rep; 2018 Oct; 9(4):305-312. PubMed ID: 30233782 [TBL] [Abstract][Full Text] [Related]
7. Identifying Ding J; Liu Y; Lai Y PeerJ; 2020; 8():e10419. PubMed ID: 33282565 [TBL] [Abstract][Full Text] [Related]
8. Identification of the hub and prognostic genes in liver hepatocellular carcinoma Gao Q; Fan L; Chen Y; Cai J Front Mol Biosci; 2022; 9():1000847. PubMed ID: 36250027 [TBL] [Abstract][Full Text] [Related]
9. Identification of potential key genes in esophageal adenocarcinoma using bioinformatics. Dong Z; Wang J; Zhang H; Zhan T; Chen Y; Xu S Exp Ther Med; 2019 Nov; 18(5):3291-3298. PubMed ID: 31616504 [TBL] [Abstract][Full Text] [Related]
10. Identification of prognostic risk factors for esophageal adenocarcinoma using bioinformatics analysis. Dong Z; Wang J; Zhan T; Xu S Onco Targets Ther; 2018; 11():4327-4337. PubMed ID: 30100738 [TBL] [Abstract][Full Text] [Related]
11. Identification of potential biomarkers in Barrett's esophagus derived esophageal adenocarcinoma. Yi N; Zhao H; He J; Xie X; Liang L; Zuo G; Xiong M; Liang Y; Yi T Sci Rep; 2023 Feb; 13(1):2345. PubMed ID: 36759514 [TBL] [Abstract][Full Text] [Related]
12. Identification of key genes for esophageal squamous cell carcinoma via integrated bioinformatics analysis and experimental confirmation. Hu J; Li R; Miao H; Wen Z J Thorac Dis; 2020 Jun; 12(6):3188-3199. PubMed ID: 32642240 [TBL] [Abstract][Full Text] [Related]
13. Identification of prognostic gene signature associated with microenvironment of lung adenocarcinoma. Yue C; Ma H; Zhou Y PeerJ; 2019; 7():e8128. PubMed ID: 31803536 [TBL] [Abstract][Full Text] [Related]
14. Predictions of the dysregulated competing endogenous RNA signature involved in the progression of human lung adenocarcinoma. Yang D; He Y; Wu B; Liu R; Wang N; Wang T; Luo Y; Li Y; Liu Y Cancer Biomark; 2020; 29(3):399-416. PubMed ID: 32741804 [TBL] [Abstract][Full Text] [Related]
15. Integrated Bioinformatics Analysis Identifies Hub Genes Associated with the Pathogenesis and Prognosis of Esophageal Squamous Cell Carcinoma. Zhang H; Zhong J; Tu Y; Liu B; Chen Z; Luo Y; Tang Y; Xiao F; Zhong J Biomed Res Int; 2019; 2019():2615921. PubMed ID: 31950035 [TBL] [Abstract][Full Text] [Related]
16. Identification of Key Genes and Pathways in Myeloma side population cells by Bioinformatics Analysis. Yang Q; Li K; Li X; Liu J Int J Med Sci; 2020; 17(14):2063-2076. PubMed ID: 32922167 [No Abstract] [Full Text] [Related]
17. Identification of key genes for predicting colorectal cancer prognosis by integrated bioinformatics analysis. Dai GP; Wang LP; Wen YQ; Ren XQ; Zuo SG Oncol Lett; 2020 Jan; 19(1):388-398. PubMed ID: 31897151 [TBL] [Abstract][Full Text] [Related]
18. Novel evidence of obesity paradox in esophageal adenocarcinoma: perspective on genes that uncouple adiposity from dismal outcomes. Zhu L; Yang F; Dong L; Wang G; Li Q; Zhong C J Cancer; 2022; 13(2):436-449. PubMed ID: 35069893 [No Abstract] [Full Text] [Related]
19. Identification of prognostic genes and tumor-infiltrating immune cells in the tumor microenvironment of esophageal squamous cell carcinoma and esophageal adenocarcinoma. Huai Q; Guo W; Han L; Kong D; Zhao L; Song P; Peng Y; Gao S Transl Cancer Res; 2021 Apr; 10(4):1787-1803. PubMed ID: 35116502 [TBL] [Abstract][Full Text] [Related]
20. Identification of key genes and pathways associated with esophageal squamous cell carcinoma development based on weighted gene correlation network analysis. Shao M; Li W; Wang S; Liu Z J Cancer; 2020; 11(6):1393-1402. PubMed ID: 32047546 [No Abstract] [Full Text] [Related] [Next] [New Search]