These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35071769)

  • 21. Phytate induced arsenic uptake and plant growth in arsenic-hyperaccumulator Pteris vittata.
    Liu X; Fu JW; Tang N; da Silva EB; Cao Y; Turner BL; Chen Y; Ma LQ
    Environ Pollut; 2017 Jul; 226():212-218. PubMed ID: 28432964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The barrier to radial oxygen loss impedes the apoplastic entry of iron into the roots of Urochloa humidicola.
    Jiménez JC; Clode PL; Signorelli S; Veneklaas EJ; Colmer TD; Kotula L
    J Exp Bot; 2021 Apr; 72(8):3279-3293. PubMed ID: 33543268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical composition of apoplastic transport barriers in relation to radial hydraulic conductivity of corn roots (Zea mays L.).
    Zimmermann HM; Hartmann K; Schreiber L; Steudle E
    Planta; 2000 Jan; 210(2):302-11. PubMed ID: 10664137
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Net sodium fluxes change significantly at anatomically distinct root zones of rice (Oryza sativa L.) seedlings.
    Zhou Q; Wang L; Cai X; Wang D; Hua X; Qu L; Lin J; Chen T
    J Plant Physiol; 2011 Jul; 168(11):1249-55. PubMed ID: 21353327
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A major locus involved in the formation of the radial oxygen loss barrier in adventitious roots of teosinte Zea nicaraguensis is located on the short-arm of chromosome 3.
    Watanabe K; Takahashi H; Sato S; Nishiuchi S; Omori F; Malik AI; Colmer TD; Mano Y; Nakazono M
    Plant Cell Environ; 2017 Feb; 40(2):304-316. PubMed ID: 27762444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arsenic-hyperaccumulator Pteris vittata efficiently solubilized phosphate rock to sustain plant growth and As uptake.
    Fu JW; Liu X; Han YH; Mei H; Cao Y; de Oliveira LM; Liu Y; Rathinasabapathi B; Chen Y; Ma LQ
    J Hazard Mater; 2017 May; 330():68-75. PubMed ID: 28212511
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of efficient arsenite uptake by arsenic hyperaccumulator Pteris vittata.
    Wang X; Ma LQ; Rathinasabapathi B; Cai Y; Liu YG; Zeng GM
    Environ Sci Technol; 2011 Nov; 45(22):9719-25. PubMed ID: 22029254
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensitivity of the macrophytes Pistia stratiotes and Eichhornia crassipes to hexazinone and dissipation of this pesticide in aquatic ecosystems.
    Ribeiro VHV; Alencar BTB; Dos Santos NMC; da Costa VAM; Dos Santos JB; Francino DMT; Souza MF; Silva DV
    Ecotoxicol Environ Saf; 2019 Jan; 168():177-183. PubMed ID: 30388534
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lateral ABA transport in maize roots (Zea mays): visualization by immunolocalization.
    Schraut D; Ullrich CI; Hartung W
    J Exp Bot; 2004 Aug; 55(403):1635-41. PubMed ID: 15234994
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient arsenate reduction in As-hyperaccumulator Pteris vittata are mediated by novel arsenate reductases PvHAC1 and PvHAC2.
    Li X; Sun D; Feng H; Chen J; Chen Y; Li H; Cao Y; Ma LQ
    J Hazard Mater; 2020 Nov; 399():122895. PubMed ID: 32937698
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The bacterial rhizobiome of hyperaccumulators: future perspectives based on omics analysis and advanced microscopy.
    Visioli G; D'Egidio S; Sanangelantoni AM
    Front Plant Sci; 2014; 5():752. PubMed ID: 25709609
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Treatment of textile effluents with
    Tabinda AB; Arif RA; Yasar A; Baqir M; Rasheed R; Mahmood A; Iqbal A
    Int J Phytoremediation; 2019; 21(10):939-943. PubMed ID: 31016996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Root microbiome assembly of As-hyperaccumulator Pteris vittata and its efficacy in arsenic requisition.
    Xiao E; Cui J; Sun W; Jiang S; Huang M; Kong D; Wu Q; Xiao T; Sun X; Ning Z
    Environ Microbiol; 2021 Apr; 23(4):1959-1971. PubMed ID: 33145903
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Sedum alfredii Hance.
    Zhang J; Zhang M; Shohag MJ; Tian S; Song H; Feng Y; Yang X
    Planta; 2016 Mar; 243(3):577-89. PubMed ID: 26547194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata.
    Zhao FJ; Wang JR; Barker JHA; Schat H; Bleeker PM; McGrath SP
    New Phytol; 2003 Aug; 159(2):403-410. PubMed ID: 33873366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arsenic Induced Phytate Exudation, and Promoted FeAsO4 Dissolution and Plant Growth in As-Hyperaccumulator Pteris vittata.
    Liu X; Fu JW; Guan DX; Cao Y; Luo J; Rathinasabapathi B; Chen Y; Ma LQ
    Environ Sci Technol; 2016 Sep; 50(17):9070-7. PubMed ID: 27483027
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arsenic complexes in the arsenic hyperaccumulator Pteris vittata (Chinese brake fern).
    Zhang W; Cai Y; Downum KR; Ma LQ
    J Chromatogr A; 2004 Jul; 1043(2):249-54. PubMed ID: 15330099
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Utilization of two invasive free-floating aquatic plants (Pistia stratiotes and Eichhornia crassipes) as sorbents for oil removal.
    Yang X; Chen S; Zhang R
    Environ Sci Pollut Res Int; 2014 Jan; 21(1):781-6. PubMed ID: 24146323
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potential use of the Pteris vittata arsenic hyperaccumulation-regulation network for phytoremediation.
    Yan H; Gao Y; Wu L; Wang L; Zhang T; Dai C; Xu W; Feng L; Ma M; Zhu YG; He Z
    J Hazard Mater; 2019 Apr; 368():386-396. PubMed ID: 30690391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selenium tolerance, accumulation, localization and speciation in a Cardamine hyperaccumulator and a non-hyperaccumulator.
    Both EB; Stonehouse GC; Lima LW; Fakra SC; Aguirre B; Wangeline AL; Xiang J; Yin H; Jókai Z; Soós Á; Dernovics M; Pilon-Smits EAH
    Sci Total Environ; 2020 Feb; 703():135041. PubMed ID: 31767332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.