These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35071881)

  • 1. Al-Microcapsules with a Self-Sacrificial Oxidation Method for High-Temperature Thermal Energy Storage.
    Tian S; Jiang Y; Si Y; Guan B; Wang Q; Zhao T
    ACS Omega; 2022 Jan; 7(2):1908-1913. PubMed ID: 35071881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microencapsulation of metal-based phase change material for high-temperature thermal energy storage.
    Nomura T; Zhu C; Sheng N; Saito G; Akiyama T
    Sci Rep; 2015 Mar; 5():9117. PubMed ID: 25766648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryogenic conditioning of microencapsulated phase change material for thermal energy storage.
    Trivedi GVN; Parameshwaran R
    Sci Rep; 2020 Oct; 10(1):18353. PubMed ID: 33110121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadmium Sulfide-Reinforced Double-Shell Microencapsulated Phase Change Materials for Advanced Thermal Energy Storage.
    Zhang S; Zhu Y; Zhang H; Xu F; Sun L; Xia Y; Lin X; Peng H; Ma L; Li B; Yan E; Huang P
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microencapsulation of stearic acid with SiO
    Ishak S; Mandal S; Lee HS; Singh JK
    Sci Rep; 2020 Sep; 10(1):15023. PubMed ID: 32929104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of Stable Phase Change Material Emulsions for Thermal Energy Storage and Thermal Management Applications: A Review.
    Liu L; Niu J; Wu JY
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase-Change Materials in Hydronic Heating and Cooling Systems: A Literature Review.
    Koželj R; Osterman E; Leonforte F; Del Pero C; Miglioli A; Zavrl E; Stropnik R; Aste N; Stritih U
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32635169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature and pH dual-stimuli-responsive phase-change microcapsules for multipurpose applications in smart drug delivery.
    Wang S; Liu H; Wu D; Wang X
    J Colloid Interface Sci; 2021 Feb; 583():470-486. PubMed ID: 33011414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal Characterization of Medium-Temperature Phase Change Materials (PCMs) for Thermal Energy Storage Using the T-History Method.
    Rolka P; Kwidzinski R; Przybylinski T; Tomaszewski A
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile preparation of carbon microcapsules containing phase-change material with enhanced thermal properties.
    Tahan Latibari S; Mehrali M; Mehrali M; Mahlia TM; Metselaar HS
    ScientificWorldJournal; 2014; 2014():379582. PubMed ID: 25054179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Stable Energy Capsules with Nano-SiO
    Graham M; Smith J; Bilton M; Shchukina E; Novikov AA; Vinokurov V; Shchukin DG
    ACS Nano; 2020 Jul; 14(7):8894-8901. PubMed ID: 32539347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecofriendly Microencapsulated Phase-Change Materials with Hybrid Core Materials for Thermal Energy Storage and Flame Retardancy.
    Hu ZT; Reinack VH; An J; Indraneel Z; Dasari A; Yang J; Yang EH
    Langmuir; 2021 Jun; 37(21):6380-6387. PubMed ID: 34000193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticles to Enhance Melting Performance of Phase Change Materials for Thermal Energy Storage.
    Han Y; Yang Y; Mallick T; Wen C
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compatibility of Phase Change Materials and Metals: Experimental Evaluation Based on the Corrosion Rate.
    Ostrý M; Bantová S; Struhala K
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32570927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of the Thermal Performance of the Paraffin-Based Microcapsules Intended for Textile Applications.
    Skurkyte-Papieviene V; Abraitiene A; Sankauskaite A; Rubeziene V; Baltusnikaite-Guzaitiene J
    Polymers (Basel); 2021 Apr; 13(7):. PubMed ID: 33915925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Docosane-Organosilica Microcapsules for Structural Composites with Thermal Energy Storage/Release Capability.
    Fredi G; Dirè S; Callone E; Ceccato R; Mondadori F; Pegoretti A
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31010108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microencapsulated phase change material via Pickering emulsion stabilized by cellulose nanofibrils for thermal energy storage.
    Bahsi Kaya G; Kim Y; Callahan K; Kundu S
    Carbohydr Polym; 2022 Jan; 276():118745. PubMed ID: 34823777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Review of Thermal Property Enhancements of Low-Temperature Nano-Enhanced Phase Change Materials.
    Williams JD; Peterson GP
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34685017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of NaF Microcapsules for High-Temperature Thermal Storage.
    Jiang Y; Wang Q; Tian S; Luo Z; Wang D; Bai Y; Lu W; Zhao T
    ACS Omega; 2022 Jul; 7(28):24688-24694. PubMed ID: 35874255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lego-Inspired Glass Capillary Microfluidic Device: A Technique for Bespoke Microencapsulation of Phase Change Materials.
    Parvate S; Vladisavljević GT; Leister N; Spyrou A; Bolognesi G; Baiocco D; Zhang Z; Chattopadhyay S
    ACS Appl Mater Interfaces; 2023 Apr; 15(13):17195-17210. PubMed ID: 36961881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.