These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35072054)

  • 1. Hierarchical organization of bone in three dimensions: A twist of twists.
    Buss DJ; Kröger R; McKee MD; Reznikov N
    J Struct Biol X; 2022; 6():100057. PubMed ID: 35072054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone mineral organization at the mesoscale: A review of mineral ellipsoids in bone and at bone interfaces.
    Micheletti C; Hurley A; Gourrier A; Palmquist A; Tang T; Shah FA; Grandfield K
    Acta Biomater; 2022 Apr; 142():1-13. PubMed ID: 35202855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils.
    Georgiadis M; Müller R; Schneider P
    J R Soc Interface; 2016 Jun; 13(119):. PubMed ID: 27335222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mineralized Collagen Fibrils: An Essential Component in Determining the Mechanical Behavior of Cortical Bone.
    Al-Qudsy L; Hu YW; Xu H; Yang PF
    ACS Biomater Sci Eng; 2023 May; 9(5):2203-2219. PubMed ID: 37075172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multiscale modelling of bone ultrastructure elastic proprieties using finite elements simulation and neural network method.
    Barkaoui A; Tlili B; Vercher-Martínez A; Hambli R
    Comput Methods Programs Biomed; 2016 Oct; 134():69-78. PubMed ID: 27480733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disuse Impairs the Mechanical Competence of Bone by Regulating the Characterizations of Mineralized Collagen Fibrils in Cortical Bone.
    Yang PF; Nie XT; Wang Z; Al-Qudsy LHH; Ren L; Xu HY; Rittweger J; Shang P
    Front Physiol; 2019; 10():775. PubMed ID: 31293444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale and multimodal X-ray analysis: Quantifying phase orientation and morphology of mineralized turkey leg tendons.
    Maurya AK; Parrilli A; Kochetkova T; Schwiedrzik J; Dommann A; Neels A
    Acta Biomater; 2021 Jul; 129():169-177. PubMed ID: 34052502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional structure of human lamellar bone: the presence of two different materials and new insights into the hierarchical organization.
    Reznikov N; Shahar R; Weiner S
    Bone; 2014 Feb; 59():93-104. PubMed ID: 24211799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical Structures of Bone and Bioinspired Bone Tissue Engineering.
    Liu Y; Luo D; Wang T
    Small; 2016 Sep; 12(34):4611-32. PubMed ID: 27322951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic scale chemical tomography of human bone.
    Langelier B; Wang X; Grandfield K
    Sci Rep; 2017 Jan; 7():39958. PubMed ID: 28054636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization of Collagen-Mineral Arrangement Using Atom Probe Tomography.
    Lee BEJ; Langelier B; Grandfield K
    Adv Biol (Weinh); 2021 Sep; 5(9):e2100657. PubMed ID: 34296817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformation regimes of collagen fibrils in cortical bone revealed by in situ morphology and elastic modulus observations under mechanical loading.
    Yang PF; Nie XT; Zhao DD; Wang Z; Ren L; Xu HY; Rittweger J; Shang P
    J Mech Behav Biomed Mater; 2018 Mar; 79():115-121. PubMed ID: 29291465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Open questions on the 3D structures of collagen containing vertebrate mineralized tissues: A perspective.
    Shahar R; Weiner S
    J Struct Biol; 2018 Mar; 201(3):187-198. PubMed ID: 29175364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteopontin regulates type I collagen fibril formation in bone tissue.
    Depalle B; McGilvery CM; Nobakhti S; Aldegaither N; Shefelbine SJ; Porter AE
    Acta Biomater; 2021 Jan; 120():194-202. PubMed ID: 32344173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchy of Bone Microdamage at Multiple Length Scales.
    Vashishth D
    Int J Fatigue; 2007 Jun; 29(6):1024-1033. PubMed ID: 18516216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ellipsoidal mesoscale mineralization pattern in human cortical bone revealed in 3D by plasma focused ion beam serial sectioning.
    Binkley DM; Deering J; Yuan H; Gourrier A; Grandfield K
    J Struct Biol; 2020 Nov; 212(2):107615. PubMed ID: 32927057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mineralized collagen fibril network spatial arrangement influences cortical bone fracture behavior.
    Wang Y; Ural A
    J Biomech; 2018 Jan; 66():70-77. PubMed ID: 29137726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discerning the subfibrillar structure of mineralized collagen fibrils: a model for the ultrastructure of bone.
    Li Y; Aparicio C
    PLoS One; 2013; 8(9):e76782. PubMed ID: 24086763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone.
    Barth HD; Zimmermann EA; Schaible E; Tang SY; Alliston T; Ritchie RO
    Biomaterials; 2011 Dec; 32(34):8892-904. PubMed ID: 21885114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiscale structural evolution of citrate-triggered intrafibrillar and interfibrillar mineralization in dense collagen gels.
    Jiang W; Griffanti G; Tamimi F; McKee MD; Nazhat SN
    J Struct Biol; 2020 Oct; 212(1):107592. PubMed ID: 32736073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.