These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35072170)

  • 1. Scaling Bioinspired Mars Flight Vehicles for Hover.
    Pohly JA; Kang CK; Sridhar MK; Landrum DB; Fahimi F; Mesmer B; Bluman JE; Aono H; Lee T
    AIAA Atmos Flight Mech Conf 2019 (2019); 2019 Jan; 2019():. PubMed ID: 35072170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data-driven CFD Scaling of Bioinspired Mars Flight Vehicles for Hover.
    Pohly JA; Kang CK; Landrum DB; Bluman JE; Aono H
    Acta Astronaut; 2021 Mar; 180():545-559. PubMed ID: 35001985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Force and Deformation Measurements of Bioinspired Flapping Wings in Ultra-Low Martian Density Environment.
    McCain JL; Pohly JA; Sridhar MK; Kang CK; Landrum DB; Aono H
    Appl Aerodyn (2020); 2020 Jan; 2020():. PubMed ID: 35072172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving bioinspired flapping wing hovering flight solutions on Mars via wing scaling.
    Bluman JE; Pohly JA; Sridhar MK; Kang CK; Landrum DB; Fahimi F; Aono H
    Bioinspir Biomim; 2018 Jun; 13(4):046010. PubMed ID: 29809163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First lift-off and flight performance of a tailless flapping-wing aerial robot in high-altitude environments.
    Tsuchiya S; Aono H; Asai K; Nonomura T; Ozawa Y; Anyoji M; Ando N; Kang CK; Pohly J
    Sci Rep; 2023 Jun; 13(1):8995. PubMed ID: 37268720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. System Analyzer for a Bioinspired Mars Flight Vehicle System for Varying Mission Contexts.
    Dunne H; Palma GE; Pohly J; Mesmer BL; Landrum B; Kang CK
    Appl Aerodyn (2020); 2020 Jan; 2020():. PubMed ID: 35072173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaling law and enhancement of lift generation of an insect-size hovering flexible wing.
    Kang CK; Shyy W
    J R Soc Interface; 2013 Aug; 10(85):20130361. PubMed ID: 23760300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wing-wake interaction destabilizes hover equilibrium of a flapping insect-scale wing.
    Bluman J; Kang CK
    Bioinspir Biomim; 2017 Jun; 12(4):046004. PubMed ID: 28463224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wing-wake interaction: comparison of 2D and 3D flapping wings in hover flight.
    Lee YJ; Lua KB
    Bioinspir Biomim; 2018 Sep; 13(6):066003. PubMed ID: 30132443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Retrospective of Project Robo Raven: Developing New Capabilities for Enhancing the Performance of Flapping Wing Aerial Vehicles.
    Bruck HA; Gupta SK
    Biomimetics (Basel); 2023 Oct; 8(6):. PubMed ID: 37887616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hovering and intermittent flight in birds.
    Tobalske BW
    Bioinspir Biomim; 2010 Dec; 5(4):045004. PubMed ID: 21098953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerodynamic analysis of hummingbird-like hovering flight.
    Haider N; Shahzad A; Qadri MNM; Shams TA
    Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34547732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and numerical studies of beetle-inspired flapping wing in hovering flight.
    Van Truong T; Le TQ; Park HC; Byun D
    Bioinspir Biomim; 2017 May; 12(3):036012. PubMed ID: 28513472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unsteady aerodynamics of insect flight.
    Ellington CP
    Symp Soc Exp Biol; 1995; 49():109-29. PubMed ID: 8571220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight.
    Wang J; Ren Y; Li C; Dong H
    Bioinspir Biomim; 2019 Jun; 14(4):046010. PubMed ID: 31096194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fruit fly scale robots can hover longer with flapping wings than with spinning wings.
    Hawkes EW; Lentink D
    J R Soc Interface; 2016 Oct; 13(123):. PubMed ID: 27707903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotational accelerations stabilize leading edge vortices on revolving fly wings.
    Lentink D; Dickinson MH
    J Exp Biol; 2009 Aug; 212(Pt 16):2705-19. PubMed ID: 19648415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.
    Sridhar M; Kang CK
    Bioinspir Biomim; 2015 May; 10(3):036007. PubMed ID: 25946079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.