These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 35072210)

  • 1. Epigenome guided crop improvement: current progress and future opportunities.
    Zhang Y; Andrews H; Eglitis-Sexton J; Godwin I; Tanurdžić M; Crisp PA
    Emerg Top Life Sci; 2022 Apr; 6(2):141-151. PubMed ID: 35072210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospects and challenges of epigenomics in crop improvement.
    Huang Y; Liu Y; Liu C; Birchler JA; Han F
    Genes Genomics; 2022 Mar; 44(3):251-257. PubMed ID: 34837632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging Genome Engineering Tools in Crop Research and Breeding.
    Bilichak A; Gaudet D; Laurie J
    Methods Mol Biol; 2020; 2072():165-181. PubMed ID: 31541446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant epigenomics for extenuation of abiotic stresses: challenges and future perspectives.
    Singh D; Chaudhary P; Taunk J; Kumar Singh C; Sharma S; Singh VJ; Singh D; Chinnusamy V; Yadav R; Pal M
    J Exp Bot; 2021 Oct; 72(20):6836-6855. PubMed ID: 34302734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetics and epigenomics: underlying mechanisms, relevance, and implications in crop improvement.
    Agarwal G; Kudapa H; Ramalingam A; Choudhary D; Sinha P; Garg V; Singh VK; Patil GB; Pandey MK; Nguyen HT; Guo B; Sunkar R; Niederhuth CE; Varshney RK
    Funct Integr Genomics; 2020 Nov; 20(6):739-761. PubMed ID: 33089419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetics and crop improvement.
    Springer NM
    Trends Genet; 2013 Apr; 29(4):241-7. PubMed ID: 23128009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic editing: Dissecting chromatin function in context.
    Policarpi C; Dabin J; Hackett JA
    Bioessays; 2021 May; 43(5):e2000316. PubMed ID: 33724509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenome and Epitranscriptome: Potential Resources for Crop Improvement.
    Hou Q; Wan X
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perspectives for epigenetic editing in crops.
    Selma S; Orzáez D
    Transgenic Res; 2021 Aug; 30(4):381-400. PubMed ID: 33891288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harnessing epigenetic variability for crop improvement: current status and future prospects.
    Kim EY; Kim KD; Cho J
    Genes Genomics; 2022 Mar; 44(3):259-266. PubMed ID: 34807374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenome editing: targeted manipulation of epigenetic modifications in plants.
    Shin H; Choi WL; Lim JY; Huh JH
    Genes Genomics; 2022 Mar; 44(3):307-315. PubMed ID: 35000141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Editing the Epigenome: Reshaping the Genomic Landscape.
    Holtzman L; Gersbach CA
    Annu Rev Genomics Hum Genet; 2018 Aug; 19():43-71. PubMed ID: 29852072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crop Epigenomics: Identifying, Unlocking, and Harnessing Cryptic Variation in Crop Genomes.
    Ji L; Neumann DA; Schmitz RJ
    Mol Plant; 2015 Jun; 8(6):860-70. PubMed ID: 25638564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting induced and natural epigenetic variation for crop improvement.
    Springer NM; Schmitz RJ
    Nat Rev Genet; 2017 Sep; 18(9):563-575. PubMed ID: 28669983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding the sorghum methylome: understanding epigenetic contributions to agronomic traits.
    Vafadarshamasbi U; Mace E; Jordan D; Crisp PA
    Biochem Soc Trans; 2022 Feb; 50(1):583-596. PubMed ID: 35212360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding epigenomics based on the rice model.
    Lu Y; Zhou DX; Zhao Y
    Theor Appl Genet; 2020 May; 133(5):1345-1363. PubMed ID: 31897514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenome Editing: State of the Art, Concepts, and Perspectives.
    Kungulovski G; Jeltsch A
    Trends Genet; 2016 Feb; 32(2):101-113. PubMed ID: 26732754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9 in epigenetics studies of health and disease.
    Sar P; Dalai S
    Prog Mol Biol Transl Sci; 2021; 181():309-343. PubMed ID: 34127198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of CRISPR associated genome engineering: application, advances and future prospects of genome targeting tool for crop improvement.
    Afzal S; Sirohi P; Singh NK
    Biotechnol Lett; 2020 Sep; 42(9):1611-1632. PubMed ID: 32642978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.