These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 35072210)

  • 21. A review of CRISPR associated genome engineering: application, advances and future prospects of genome targeting tool for crop improvement.
    Afzal S; Sirohi P; Singh NK
    Biotechnol Lett; 2020 Sep; 42(9):1611-1632. PubMed ID: 32642978
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome editing in fruit, ornamental, and industrial crops.
    Ramirez-Torres F; Ghogare R; Stowe E; Cerdá-Bennasser P; Lobato-Gómez M; Williamson-Benavides BA; Giron-Calva PS; Hewitt S; Christou P; Dhingra A
    Transgenic Res; 2021 Aug; 30(4):499-528. PubMed ID: 33825100
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The CRISPR/Cas9 system and its applications in crop genome editing.
    Bao A; Burritt DJ; Chen H; Zhou X; Cao D; Tran LP
    Crit Rev Biotechnol; 2019 May; 39(3):321-336. PubMed ID: 30646772
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR/Cas-Based Epigenome Editing: Advances, Applications, and Clinical Utility.
    Goell JH; Hilton IB
    Trends Biotechnol; 2021 Jul; 39(7):678-691. PubMed ID: 33972106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epigenetic variation in maize agronomical traits for breeding and trait improvement.
    Zhang D; Gan Y; Le L; Pu L
    J Genet Genomics; 2024 Feb; ():. PubMed ID: 38310944
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advances in Plant Epigenome Editing Research and Its Application in Plants.
    Qi Q; Hu B; Jiang W; Wang Y; Yan J; Ma F; Guan Q; Xu J
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plant synthetic epigenomic engineering for crop improvement.
    Yang L; Zhang P; Wang Y; Hu G; Guo W; Gu X; Pu L
    Sci China Life Sci; 2022 Nov; 65(11):2191-2204. PubMed ID: 35851940
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR/Cas systems: opportunities and challenges for crop breeding.
    Biswas S; Zhang D; Shi J
    Plant Cell Rep; 2021 Jun; 40(6):979-998. PubMed ID: 33977326
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Will epigenetics be a key player in crop breeding?
    Tonosaki K; Fujimoto R; Dennis ES; Raboy V; Osabe K
    Front Plant Sci; 2022; 13():958350. PubMed ID: 36247549
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Live-Animal Epigenome Editing: Convergence of Novel Techniques.
    Gomez JA; Beitnere U; Segal DJ
    Trends Genet; 2019 Jul; 35(7):527-541. PubMed ID: 31128888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reader-Effectors as Actuators of Epigenome Editing.
    Kim SH; Haynes KA
    Methods Mol Biol; 2024; 2842():103-127. PubMed ID: 39012592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR/Cas9-Mediated Gene Editing Revolutionizes the Improvement of Horticulture Food Crops.
    Wang T; Zhang C; Zhang H; Zhu H
    J Agric Food Chem; 2021 Nov; 69(45):13260-13269. PubMed ID: 33734711
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transposable elements, a treasure trove to decipher epigenetic variation: insights from Arabidopsis and crop epigenomes.
    Mirouze M; Vitte C
    J Exp Bot; 2014 Jun; 65(10):2801-12. PubMed ID: 24744427
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR/Cas mediated epigenome editing for cancer therapy.
    Ansari I; Chaturvedi A; Chitkara D; Singh S
    Semin Cancer Biol; 2022 Aug; 83():570-583. PubMed ID: 33421620
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative Epigenetics: A New Avenue for Crop Improvement.
    Gahlaut V; Zinta G; Jaiswal V; Kumar S
    Epigenomes; 2020 Nov; 4(4):. PubMed ID: 34968304
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Epigenetics and its role in effecting agronomical traits.
    Gupta C; Salgotra RK
    Front Plant Sci; 2022; 13():925688. PubMed ID: 36046583
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Base editing in crops: current advances, limitations and future implications.
    Mishra R; Joshi RK; Zhao K
    Plant Biotechnol J; 2020 Jan; 18(1):20-31. PubMed ID: 31365173
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Progresses of CRISPR/Cas9 genome editing in forage crops.
    Ul Haq SI; Zheng D; Feng N; Jiang X; Qiao F; He JS; Qiu QS
    J Plant Physiol; 2022 Dec; 279():153860. PubMed ID: 36371870
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A review on CRISPR/Cas-based epigenetic regulation in plants.
    Jogam P; Sandhya D; Alok A; Peddaboina V; Allini VR; Zhang B
    Int J Biol Macromol; 2022 Oct; 219():1261-1271. PubMed ID: 36057300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.