These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 3507248)

  • 1. In vitro cytotoxicity of heavy metals, acrylamide, and organotin salts to neural cells and fibroblasts.
    Borenfreund E; Babich H
    Cell Biol Toxicol; 1987 Mar; 3(1):63-73. PubMed ID: 3507248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytotoxicity of metals, metal-metal and metal-chelator combinations assayed in vitro.
    Borenfreund E; Puerner JA
    Toxicology; 1986 May; 39(2):121-34. PubMed ID: 3705079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of neurons derived from mouse P19, rat PC12 and human SH-SY5Y cells in the assessment of chemical- and toxin-induced neurotoxicity.
    Popova D; Karlsson J; Jacobsson SOP
    BMC Pharmacol Toxicol; 2017 Jun; 18(1):42. PubMed ID: 28583171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity, bioaccumulation, and interactive effects of organotin, cadmium, and chromium on Artemia franciscana.
    Hadjispyrou S; Kungolos A; Anagnostopoulos A
    Ecotoxicol Environ Saf; 2001 Jun; 49(2):179-86. PubMed ID: 11386732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of chemicals using a battery of neurobehavioral tests: a comparative study.
    Pryor GT; Uyeno ET; Tilson HA; Mitchell CL
    Neurobehav Toxicol Teratol; 1983; 5(1):91-117. PubMed ID: 6190097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytotoxicity of metal ions to human oligodendroglial cells and human gingival fibroblasts assessed by mitochondrial dehydrogenase activity.
    Issa Y; Brunton P; Waters CM; Watts DC
    Dent Mater; 2008 Feb; 24(2):281-7. PubMed ID: 18023858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-induced diseases of the nervous system.
    Le Quesne PM
    Br J Hosp Med; 1982 Nov; 28(5):534-8. PubMed ID: 7171904
    [No Abstract]   [Full Text] [Related]  

  • 8. Embryotoxicity hazard assessment of methylmercury and chromium using embryonic stem cells.
    Stummann TC; Hareng L; Bremer S
    Toxicology; 2007 Dec; 242(1-3):130-43. PubMed ID: 17980949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytotoxicity of cyclophosphamide and acrylamide in glioma and neuroblastoma cell lines cocultured with liver cells.
    Ericsson AC; Walum E
    Toxicol Lett; 1984 Mar; 20(3):251-6. PubMed ID: 6701912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The neurotoxicology and pathology of organomercury, organolead, and organotin.
    Chang LW
    J Toxicol Sci; 1990 Dec; 15 Suppl 4():125-51. PubMed ID: 2100318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of neurotoxins on brain creatine kinase activity.
    Matsuoka M; Inoue N; Igisu H; Kohriyama K
    Environ Res; 1993 Apr; 61(1):37-42. PubMed ID: 8472675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of the effects of acrylamide, methylmercury, and 2,5-hexanedione on motor functions in mice.
    Gilbert SG; Maurissen JP
    J Toxicol Environ Health; 1982 Jul; 10(1):31-41. PubMed ID: 7131587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro evaluation of inorganic and methyl mercury mediated cytotoxic effect on neural cells derived from different animal species.
    Tong J; Wang Y; Lu Y
    J Environ Sci (China); 2016 Mar; 41():138-145. PubMed ID: 26969059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apoptosis of cerebellar granule cells induced by organotin compounds found in drinking water: involvement of MAP kinases.
    Mundy WR; Freudenrich TM
    Neurotoxicology; 2006 Jan; 27(1):71-81. PubMed ID: 16181675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial viability and apoptosis induced by aluminum, mercuric mercury and methylmercury in cell lines of neural origin.
    Toimela T; Tähti H
    Arch Toxicol; 2004 Oct; 78(10):565-74. PubMed ID: 15150681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embryotoxicity hazard assessment of cadmium and arsenic compounds using embryonic stem cells.
    Stummann TC; Hareng L; Bremer S
    Toxicology; 2008 Oct; 252(1-3):118-22. PubMed ID: 18775467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stannin, a protein that localizes to the mitochondria and sensitizes NIH-3T3 cells to trimethyltin and dimethyltin toxicity.
    Davidson CE; Reese BE; Billingsley ML; Yun JK
    Mol Pharmacol; 2004 Oct; 66(4):855-63. PubMed ID: 15269288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative organotin toxicity in the developing rat: somatic and morphological changes and relationship to accumulation of total tin.
    Mushak P; Krigman MR; Mailman RB
    Neurobehav Toxicol Teratol; 1982; 4(2):209-15. PubMed ID: 7088250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative toxicity and apoptosis induced by diorganotins in rat pheochromocytoma (PC12) cells.
    Liu E; Du X; Ge R; Liang T; Niu Q; Li Q
    Food Chem Toxicol; 2013 Oct; 60():302-8. PubMed ID: 23927876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of neurotoxicity related to selective disruption of microtubules and intermediate filaments.
    Sager PR; Matheson DW
    Toxicology; 1988 May; 49(2-3):479-92. PubMed ID: 3376145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.