These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 35072511)

  • 1. First Report of Take-All Root Rot Caused by
    Zong J; Chen J; Geng J; Dong Y; Liu J; Zhou Y; Hu J
    Plant Dis; 2022 Jul; ():PDIS12212841PDN. PubMed ID: 35072511
    [No Abstract]   [Full Text] [Related]  

  • 2. Cross Pathogenicity of Gaeumannomyces graminis var. graminis from Bermudagrass, St. Augustinegrass, and Rice in Florida and Texas.
    Datnoff LE; Elliott ML; Krausz JP
    Plant Dis; 1997 Oct; 81(10):1127-1131. PubMed ID: 30861706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and Aggressiveness of Take-All Root Rot Pathogens Isolated from Symptomatic Bermudagrass Putting Greens.
    Stephens CM; Gannon TW; Cubeta MA; Sit TL; Kerns JP
    Phytopathology; 2022 Apr; 112(4):811-819. PubMed ID: 34664976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Take-All Root Rot of St. Augustinegrass: First Report in Mississippi.
    Tomaso-Peterson M; Trevathan LE; Gonzalez MS
    Plant Dis; 2000 Aug; 84(8):921. PubMed ID: 30832150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First Report of Gaeumannomyces graminis var. graminis on Seashore Paspalum in the United States.
    Elmore WC; Gooch MD; Stiles CM
    Plant Dis; 2002 Dec; 86(12):1405. PubMed ID: 30818459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detoxification of Benzoxazolinone Allelochemicals from Wheat by Gaeumannomyces graminis var. tritici, G. graminis var. graminis, G. graminis var. avenae, and Fusarium culmorum.
    Friebe A; Vilich V; Hennig L; Kluge M; Sicker D
    Appl Environ Microbiol; 1998 Jul; 64(7):2386-91. PubMed ID: 9647804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complexity of
    Zidek MJ; Yu L; Jochum M; Jo YK
    Mycologia; 2021; 113(3):599-611. PubMed ID: 33851899
    [No Abstract]   [Full Text] [Related]  

  • 8. Comparison of fungi within the Gaeumannomyces-Phialophora complex by analysis of ribosomal DNA sequences.
    Bryan GT; Daniels MJ; Osbourn AE
    Appl Environ Microbiol; 1995 Feb; 61(2):681-9. PubMed ID: 7574606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gaeumannomyces graminis, the take-all fungus and its relatives.
    Freeman J; Ward E
    Mol Plant Pathol; 2004 Jul; 5(4):235-52. PubMed ID: 20565593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of Gaeumannomyces graminis Varieties Using Polymerase Chain Reaction with Variety-Specific Primers.
    Fouly HM; Wilkinson HT
    Plant Dis; 2000 Sep; 84(9):947-951. PubMed ID: 30832025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel screening strategy reveals a potent Bacillus antagonist capable of mitigating wheat take-all disease caused by Gaeumannomyces graminis var. tritici.
    Zhang DD; Guo XJ; Wang YJ; Gao TG; Zhu BC
    Lett Appl Microbiol; 2017 Dec; 65(6):512-519. PubMed ID: 28977681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colonization of barley roots by endophytic fungi and their reduction of take-all caused by Gaeumannomyces graminis var. tritici.
    MaciĆ”-Vicente JG; Jansson HB; Mendgen K; Lopez-Llorca LV
    Can J Microbiol; 2008 Aug; 54(8):600-9. PubMed ID: 18772922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA Probe for Identification of the Take-All Fungus, Gaeumannomyces graminis.
    Henson JM
    Appl Environ Microbiol; 1989 Feb; 55(2):284-8. PubMed ID: 16347842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Polymerase Chain Reaction To Detect the Take-All Fungus, Gaeumannomyces graminis, in Infected Wheat Plants.
    Schesser K; Luder A; Henson JM
    Appl Environ Microbiol; 1991 Feb; 57(2):553-6. PubMed ID: 16348420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First Report of Gaeumannomyces graminis var. graminis on Kikuyugrass (Pennisetum clandestinum) in the United States.
    Wong FP; Gelernter W; Stowell L; Tisserat NA
    Plant Dis; 2003 May; 87(5):600. PubMed ID: 30812971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Avenacin Production in Creeping Bentgrass (Agrostis stolonifera) and Its Influence on the Host Range of Gaeumannomyces graminis.
    Thomas SL; Bonello P; Lipps PE; Boehm MJ
    Plant Dis; 2006 Jan; 90(1):33-38. PubMed ID: 30786471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation in Sensitivity of Gaeumannomyces graminis to Antibiotics Produced by Fluorescent Pseudomonas spp. and Effect on Biological Control of Take-All of Wheat.
    Mazzola M; Fujimoto DK; Thomashow LS; Cook RJ
    Appl Environ Microbiol; 1995 Jul; 61(7):2554-9. PubMed ID: 16535070
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Vines PL; Hoffmann FG; Meyer F; Allen TW; Tomaso-Peterson M
    Mycologia; 2021; 113(5):938-948. PubMed ID: 34133260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifungal Effects of Drimane Sesquiterpenoids Isolated from
    Paz C; Viscardi S; Iturra A; Marin V; Miranda F; Barra PJ; Mendez I; Duran P
    Appl Environ Microbiol; 2020 Nov; 86(24):. PubMed ID: 33036992
    [No Abstract]   [Full Text] [Related]  

  • 20. Comparison of Gaeumannomyces- and Phialophora-like fungal pathogens from maize and other plants using DNA methods.
    Ward E; Bateman GL
    New Phytol; 1999 Feb; 141(2):323-331. PubMed ID: 33862920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.