These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 35073349)
1. In silico analysis of potential off-target sites to gene editing for Mucopolysaccharidosis type I using the CRISPR/Cas9 system: Implications for population-specific treatments. Carneiro P; de Freitas MV; Matte U PLoS One; 2022; 17(1):e0262299. PubMed ID: 35073349 [TBL] [Abstract][Full Text] [Related]
2. CRISPR-Cas9-mediated gene editing in human MPS I fibroblasts. de Carvalho TG; Schuh R; Pasqualim G; Pellenz FM; Filippi-Chiela EC; Giugliani R; Baldo G; Matte U Gene; 2018 Dec; 678():33-37. PubMed ID: 30081189 [TBL] [Abstract][Full Text] [Related]
3. Gene editing of MPS I human fibroblasts by co-delivery of a CRISPR/Cas9 plasmid and a donor oligonucleotide using nanoemulsions as nonviral carriers. Schuh RS; de Carvalho TG; Giugliani R; Matte U; Baldo G; Teixeira HF Eur J Pharm Biopharm; 2018 Jan; 122():158-166. PubMed ID: 29122734 [TBL] [Abstract][Full Text] [Related]
4. In vivo genome editing of mucopolysaccharidosis I mice using the CRISPR/Cas9 system. Schuh RS; Poletto É; Pasqualim G; Tavares AMV; Meyer FS; Gonzalez EA; Giugliani R; Matte U; Teixeira HF; Baldo G J Control Release; 2018 Oct; 288():23-33. PubMed ID: 30170069 [TBL] [Abstract][Full Text] [Related]
5. Neonatal nonviral gene editing with the CRISPR/Cas9 system improves some cardiovascular, respiratory, and bone disease features of the mucopolysaccharidosis I phenotype in mice. Schuh RS; Gonzalez EA; Tavares AMV; Seolin BG; Elias LS; Vera LNP; Kubaski F; Poletto E; Giugliani R; Teixeira HF; Matte U; Baldo G Gene Ther; 2020 Feb; 27(1-2):74-84. PubMed ID: 31827259 [TBL] [Abstract][Full Text] [Related]
6. Brain and visceral gene editing of mucopolysaccharidosis I mice by nasal delivery of the CRISPR/Cas9 system. Vera LNP; Schuh RS; Fachel FNS; Poletto E; Piovesan E; Kubaski F; Couto E; Brum B; Rodrigues G; Souza H; Giugliani R; Matte U; Baldo G; Teixeira HF J Gene Med; 2022 Apr; 24(4):e3410. PubMed ID: 35032067 [TBL] [Abstract][Full Text] [Related]
7. A Highly Efficacious PS Gene Editing System Corrects Metabolic and Neurological Complications of Mucopolysaccharidosis Type I. Ou L; Przybilla MJ; Ahlat O; Kim S; Overn P; Jarnes J; O'Sullivan MG; Whitley CB Mol Ther; 2020 Jun; 28(6):1442-1454. PubMed ID: 32278382 [TBL] [Abstract][Full Text] [Related]
9. Frequency of off-targeting in genome edited pigs produced via direct injection of the CRISPR/Cas9 system into developing embryos. Carey K; Ryu J; Uh K; Lengi AJ; Clark-Deener S; Corl BA; Lee K BMC Biotechnol; 2019 May; 19(1):25. PubMed ID: 31060546 [TBL] [Abstract][Full Text] [Related]
10. Detection of CRISPR/Cas9-Generated Off-Target Effect by Integration-Defective Lentiviral Vector. Wang X; Wu Y; Yee JK Methods Mol Biol; 2021; 2162():243-260. PubMed ID: 32926387 [TBL] [Abstract][Full Text] [Related]
11. Biased and Unbiased Methods for the Detection of Off-Target Cleavage by CRISPR/Cas9: An Overview. Martin F; Sánchez-Hernández S; Gutiérrez-Guerrero A; Pinedo-Gomez J; Benabdellah K Int J Mol Sci; 2016 Sep; 17(9):. PubMed ID: 27618019 [TBL] [Abstract][Full Text] [Related]
12. Mucopolysaccharidosis Type I Phenotypically Corrected with Edited Hematopoietic Stem Cells: Instead of altering the IDUA gene, a protein was inserted in a repurposable place in the genome known as a "safe harbor locus". Am J Med Genet A; 2020 Feb; 182(2):275-276. PubMed ID: 31943709 [No Abstract] [Full Text] [Related]
13. SpRY Cas9 Can Utilize a Variety of Protospacer Adjacent Motif Site Sequences To Edit the Candida albicans Genome. Evans BA; Bernstein DA mSphere; 2021 May; 6(3):. PubMed ID: 34011687 [No Abstract] [Full Text] [Related]
14. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity. Tadić V; Josipović G; Zoldoš V; Vojta A Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448 [TBL] [Abstract][Full Text] [Related]
15. Human genome-edited hematopoietic stem cells phenotypically correct Mucopolysaccharidosis type I. Gomez-Ospina N; Scharenberg SG; Mostrel N; Bak RO; Mantri S; Quadros RM; Gurumurthy CB; Lee C; Bao G; Suarez CJ; Khan S; Sawamoto K; Tomatsu S; Raj N; Attardi LD; Aurelian L; Porteus MH Nat Commun; 2019 Sep; 10(1):4045. PubMed ID: 31492863 [TBL] [Abstract][Full Text] [Related]
16. VARSCOT: variant-aware detection and scoring enables sensitive and personalized off-target detection for CRISPR-Cas9. Wilson LOW; Hetzel S; Pockrandt C; Reinert K; Bauer DC BMC Biotechnol; 2019 Jun; 19(1):40. PubMed ID: 31248401 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide identification and analysis of highly specific CRISPR/Cas9 editing sites in pepper (Capsicum annuum L.). Li G; Zhou Z; Liang L; Song Z; Hu Y; Cui J; Chen W; Hu K; Cheng J PLoS One; 2020; 15(12):e0244515. PubMed ID: 33373406 [TBL] [Abstract][Full Text] [Related]
18. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure. Soriano V AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352 [TBL] [Abstract][Full Text] [Related]