BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35073737)

  • 1. Coxiella burnetii Sterol-Modifying Protein Stmp1 Regulates Cholesterol in the Intracellular Niche.
    Clemente TM; Ratnayake R; Samanta D; Augusto L; Beare PA; Heinzen RA; Gilk SD
    mBio; 2022 Feb; 13(1):e0307321. PubMed ID: 35073737
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Hall BA; Senior KE; Ocampo NT; Samanta D
    Front Cell Infect Microbiol; 2024; 14():1394019. PubMed ID: 38841112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Host Lipid Transport Protein ORP1 Is Necessary for Coxiella burnetii Growth and Vacuole Expansion in Macrophages.
    Schuler B; Sladek M; Gilk SD
    mSphere; 2023 Jun; 8(3):e0010423. PubMed ID: 37017523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated Cholesterol in the
    Mulye M; Samanta D; Winfree S; Heinzen RA; Gilk SD
    mBio; 2017 Feb; 8(1):. PubMed ID: 28246364
    [No Abstract]   [Full Text] [Related]  

  • 5. Replication of Coxiella burnetii in a Lysosome-Like Vacuole Does Not Require Lysosomal Hydrolases.
    Miller HE; Hoyt FH; Heinzen RA
    Infect Immun; 2019 Nov; 87(11):. PubMed ID: 31405956
    [No Abstract]   [Full Text] [Related]  

  • 6.
    Zhao M; Zhang S; Wan W; Zhou C; Li N; Cheng R; Yu Y; Ouyang X; Zhou D; Jiao J; Xiong X
    Virulence; 2024 Dec; 15(1):2350893. PubMed ID: 38725096
    [No Abstract]   [Full Text] [Related]  

  • 7. Effector Protein Cig2 Decreases Host Tolerance of Infection by Directing Constitutive Fusion of Autophagosomes with the Coxiella-Containing Vacuole.
    Kohler LJ; Reed ShC; Sarraf SA; Arteaga DD; Newton HJ; Roy CR
    mBio; 2016 Jul; 7(4):. PubMed ID: 27435465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysosomal trafficking regulator restricts intracellular growth of
    Wan W; Zhang S; Zhao M; OuYang X; Yu Y; Xiong X; Zhao N; Jiao J
    Front Cell Infect Microbiol; 2023; 13():1336600. PubMed ID: 38282619
    [No Abstract]   [Full Text] [Related]  

  • 9. Coxiella burnetii Type 4B Secretion System-dependent manipulation of endolysosomal maturation is required for bacterial growth.
    Samanta D; Clemente TM; Schuler BE; Gilk SD
    PLoS Pathog; 2019 Dec; 15(12):e1007855. PubMed ID: 31869379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The secreted protein kinase CstK from
    Martinez E; Huc-Brandt S; Brelle S; Allombert J; Cantet F; Gannoun-Zaki L; Burette M; Martin M; Letourneur F; Bonazzi M; Molle V
    J Biol Chem; 2020 May; 295(21):7391-7403. PubMed ID: 32303638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noncanonical Inhibition of mTORC1 by Coxiella burnetii Promotes Replication within a Phagolysosome-Like Vacuole.
    Larson CL; Sandoz KM; Cockrell DC; Heinzen RA
    mBio; 2019 Feb; 10(1):. PubMed ID: 30723133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effector Cig57 Hijacks FCHO-Mediated Vesicular Trafficking to Facilitate Intracellular Replication of Coxiella burnetii.
    Latomanski EA; Newton P; Khoo CA; Newton HJ
    PLoS Pathog; 2016 Dec; 12(12):e1006101. PubMed ID: 28002452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dot/Icm-Translocated Proteins Important for Biogenesis of the Coxiella burnetii-Containing Vacuole Identified by Screening of an Effector Mutant Sublibrary.
    Crabill E; Schofield WB; Newton HJ; Goodman AL; Roy CR
    Infect Immun; 2018 Apr; 86(4):. PubMed ID: 29339460
    [No Abstract]   [Full Text] [Related]  

  • 14. A screen of Coxiella burnetii mutants reveals important roles for Dot/Icm effectors and host autophagy in vacuole biogenesis.
    Newton HJ; Kohler LJ; McDonough JA; Temoche-Diaz M; Crabill E; Hartland EL; Roy CR
    PLoS Pathog; 2014 Jul; 10(7):e1004286. PubMed ID: 25080348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actin polymerization in the endosomal pathway, but not on the Coxiella-containing vacuole, is essential for pathogen growth.
    Miller HE; Larson CL; Heinzen RA
    PLoS Pathog; 2018 Apr; 14(4):e1007005. PubMed ID: 29668757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The
    Pechstein J; Schulze-Luehrmann J; Bisle S; Cantet F; Beare PA; Ölke M; Bonazzi M; Berens C; Lührmann A
    Front Cell Infect Microbiol; 2020; 10():559915. PubMed ID: 33282747
    [No Abstract]   [Full Text] [Related]  

  • 17. The role of microtubules and the dynein/dynactin motor complex of host cells in the biogenesis of the Coxiella burnetii-containing vacuole.
    Ortiz Flores RM; Distel JS; Aguilera MO; Berón W
    PLoS One; 2019; 14(1):e0209820. PubMed ID: 30640917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Host pathways important for Coxiella burnetii infection revealed by genome-wide RNA interference screening.
    McDonough JA; Newton HJ; Klum S; Swiss R; Agaisse H; Roy CR
    mBio; 2013 Jan; 4(1):e00606-12. PubMed ID: 23362322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between autophagic vesicles and the Coxiella-containing vacuole requires CLTC (clathrin heavy chain).
    Latomanski EA; Newton HJ
    Autophagy; 2018; 14(10):1710-1725. PubMed ID: 29973118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of arginine finger-like motifs, and endosome-lysosome basolateral sorting signals within the Coxiella burnetii type IV secreted effector protein CirA.
    Weber MM; Faris R; van Schaik EJ; Samuel JE
    Microbes Infect; 2018 May; 20(5):302-307. PubMed ID: 29331581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.