BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 35073745)

  • 1. Isolation and Characterization of a Novel Temperate Escherichia coli Bacteriophage, Kapi1, Which Modifies the O-Antigen and Contributes to the Competitiveness of Its Host during Colonization of the Murine Gastrointestinal Tract.
    Pick K; Ju T; Willing BP; Raivio TL
    mBio; 2022 Feb; 13(1):e0208521. PubMed ID: 35073745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prophages in Lactobacillus reuteri Are Associated with Fitness Trade-Offs but Can Increase Competitiveness in the Gut Ecosystem.
    Oh JH; Lin XB; Zhang S; Tollenaar SL; Özçam M; Dunphy C; Walter J; van Pijkeren JP
    Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31676478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coliphages of the human urinary microbiota.
    Crum E; Merchant Z; Ene A; Miller-Ensminger T; Johnson G; Wolfe AJ; Putonti C
    PLoS One; 2023; 18(4):e0283930. PubMed ID: 37053131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysogeny is prevalent and widely distributed in the murine gut microbiota.
    Kim MS; Bae JW
    ISME J; 2018 Apr; 12(4):1127-1141. PubMed ID: 29416123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equine Intestinal O-Seroconverting Temperate Coliphage Hf4s: Genomic and Biological Characterization.
    Kulikov EE; Golomidova AK; Efimov AD; Belalov IS; Letarova MA; Zdorovenko EL; Knirel YA; Dmitrenok AS; Letarov AV
    Appl Environ Microbiol; 2021 Oct; 87(21):e0112421. PubMed ID: 34406832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacteriophages of the Urinary Microbiome.
    Miller-Ensminger T; Garretto A; Brenner J; Thomas-White K; Zambom A; Wolfe AJ; Putonti C
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29378882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The book of Lambda does not tell us that naturally occurring lysogens of
    Berryhill BA; Garcia R; McCall IC; Manuel JA; Chaudhry W; Petit MA; Levin BR
    Proc Natl Acad Sci U S A; 2023 Mar; 120(11):e2212121120. PubMed ID: 36881631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacteriophage tRNA-dependent lysogeny: requirement of phage-encoded tRNA genes for establishment of lysogeny.
    Guerrero-Bustamante CA; Hatfull GF
    mBio; 2024 Feb; 15(2):e0326023. PubMed ID: 38236026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Human Gut Phage Community and Its Implications for Health and Disease.
    Manrique P; Dills M; Young MJ
    Viruses; 2017 Jun; 9(6):. PubMed ID: 28594392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signals triggering prophage induction in the gut microbiota.
    Henrot C; Petit MA
    Mol Microbiol; 2022 Nov; 118(5):494-502. PubMed ID: 36164818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phages carry interbacterial weapons encoded by biosynthetic gene clusters.
    Dragoš A; Andersen AJC; Lozano-Andrade CN; Kempen PJ; Kovács ÁT; Strube ML
    Curr Biol; 2021 Aug; 31(16):3479-3489.e5. PubMed ID: 34186025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysogenic conversion of atypical enteropathogenic Escherichia coli (aEPEC) from human, murine, and bovine origin with bacteriophage Φ3538 Δstx
    Eichhorn I; Heidemanns K; Ulrich RG; Schmidt H; Semmler T; Fruth A; Bethe A; Goulding D; Pickard D; Karch H; Wieler LH
    Int J Med Microbiol; 2018 Oct; 308(7):890-898. PubMed ID: 29937391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic Sequencing of High-Efficiency Transducing Streptococcal Bacteriophage A25: Consequences of Escape from Lysogeny.
    McCullor K; Postoak B; Rahman M; King C; McShan WM
    J Bacteriol; 2018 Dec; 200(23):. PubMed ID: 30224437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The adaptation of temperate bacteriophages to their host genomes.
    Bobay LM; Rocha EP; Touchon M
    Mol Biol Evol; 2013 Apr; 30(4):737-51. PubMed ID: 23243039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What makes a temperate phage an effective bacterial weapon?
    Thomas MJN; Brockhurst MA; Coyte KZ
    mSystems; 2024 Jun; 9(6):e0103623. PubMed ID: 38727217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Eco-evolutionary Model on Surviving Lysogeny Through Grounding and Accumulation of Prophages.
    Sudhakari PA; Ramisetty BCM
    Microb Ecol; 2023 Nov; 86(4):3068-3081. PubMed ID: 37843655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecotype formation and prophage domestication during gut bacterial evolution.
    Frazão N; Gordo I
    Bioessays; 2023 Aug; 45(8):e2300063. PubMed ID: 37353919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein-Mediated and RNA-Based Origins of Replication of Extrachromosomal Mycobacterial Prophages.
    Wetzel KS; Aull HG; Zack KM; Garlena RA; Hatfull GF
    mBio; 2020 Mar; 11(2):. PubMed ID: 32209683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimality of the spontaneous prophage induction rate.
    Cortes MG; Krog J; Balázsi G
    J Theor Biol; 2019 Dec; 483():110005. PubMed ID: 31525321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of prophages to evolution and virulence of bacterial pathogens.
    Fortier LC; Sekulovic O
    Virulence; 2013 Jul; 4(5):354-65. PubMed ID: 23611873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.