These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35073787)

  • 41. Synaptic Dysfunction in Alzheimer's Disease: Aβ, Tau, and Epigenetic Alterations.
    Li K; Wei Q; Liu FF; Hu F; Xie AJ; Zhu LQ; Liu D
    Mol Neurobiol; 2018 Apr; 55(4):3021-3032. PubMed ID: 28456942
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synaptic dysfunction in Alzheimer's disease.
    Marcello E; Epis R; Saraceno C; Di Luca M
    Adv Exp Med Biol; 2012; 970():573-601. PubMed ID: 22351073
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mitochondria in Excitatory and Inhibitory Synapses have Similar Susceptibility to Amyloid-β Peptides Modeling Alzheimer's Disease.
    Amorim JA; Canas PM; Tomé AR; Rolo AP; Agostinho P; Palmeira CM; Cunha RA
    J Alzheimers Dis; 2017; 60(2):525-536. PubMed ID: 28869472
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of synaptic activity in the regulation of amyloid beta levels in Alzheimer's disease.
    Cheng X; Wu J; Geng M; Xiong J
    Neurobiol Aging; 2014 Jun; 35(6):1217-32. PubMed ID: 24368087
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhancement of tripartite synapses as a potential therapeutic strategy for Alzheimer's disease: a preclinical study in rTg4510 mice.
    Foster JB; Lashley R; Zhao F; Wang X; Kung N; Askwith CC; Lin L; Shultis MW; Hodgetts KJ; Lin CG
    Alzheimers Res Ther; 2019 Aug; 11(1):75. PubMed ID: 31439023
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Altered synapses and gliotransmission in Alzheimer's disease and AD model mice.
    Mitew S; Kirkcaldie MT; Dickson TC; Vickers JC
    Neurobiol Aging; 2013 Oct; 34(10):2341-51. PubMed ID: 23643146
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synaptic Plasticity, Dementia and Alzheimer Disease.
    Skaper SD; Facci L; Zusso M; Giusti P
    CNS Neurol Disord Drug Targets; 2017; 16(3):220-233. PubMed ID: 28088900
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Amyloid β: linking synaptic plasticity failure to memory disruption in Alzheimer's disease.
    Ma T; Klann E
    J Neurochem; 2012 Jan; 120 Suppl 1(Suppl 1):140-148. PubMed ID: 22122128
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bis(propyl)-cognitin Prevents β-amyloid-induced Memory Deficits as Well as Synaptic Formation and Plasticity Impairments via the Activation of PI3-K Pathway.
    Jiang L; Huang M; Xu S; Wang Y; An P; Feng C; Chen X; Wei X; Han Y; Wang Q
    Mol Neurobiol; 2016 Aug; 53(6):3832-3841. PubMed ID: 26160762
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular mechanisms of Alzheimer's disease: From therapeutic targets to promising drugs.
    Alan E; Kerry Z; Sevin G
    Fundam Clin Pharmacol; 2023 Jun; 37(3):397-427. PubMed ID: 36576325
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Is Alzheimer's disease a result of presynaptic failure? Synaptic dysfunctions induced by oligomeric beta-amyloid.
    Nimmrich V; Ebert U
    Rev Neurosci; 2009; 20(1):1-12. PubMed ID: 19526730
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Amyloid beta peptides and glutamatergic synaptic dysregulation.
    Parameshwaran K; Dhanasekaran M; Suppiramaniam V
    Exp Neurol; 2008 Mar; 210(1):7-13. PubMed ID: 18053990
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Role of Amyloid-Beta and Tau in the Early Pathogenesis of Alzheimer's Disease.
    Yin X; Qiu Y; Zhao C; Zhou Z; Bao J; Qian W
    Med Sci Monit; 2021 Sep; 27():e933084. PubMed ID: 34471085
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Alzheimer's disease: targeting the glutamatergic system.
    Conway ME
    Biogerontology; 2020 Jun; 21(3):257-274. PubMed ID: 32048098
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neuropathologic changes in Alzheimer's disease: potential targets for treatment.
    Wenk GL
    J Clin Psychiatry; 2006; 67 Suppl 3():3-7; quiz 23. PubMed ID: 16649845
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer's disease and neuronal loss.
    Ager RR; Davis JL; Agazaryan A; Benavente F; Poon WW; LaFerla FM; Blurton-Jones M
    Hippocampus; 2015 Jul; 25(7):813-26. PubMed ID: 25530343
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synaptic dysfunction in early phases of Alzheimer's Disease.
    Pelucchi S; Gardoni F; Di Luca M; Marcello E
    Handb Clin Neurol; 2022; 184():417-438. PubMed ID: 35034752
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Defective mitophagy and synaptic degeneration in Alzheimer's disease: Focus on aging, mitochondria and synapse.
    Morton H; Kshirsagar S; Orlov E; Bunquin LE; Sawant N; Boleng L; George M; Basu T; Ramasubramanian B; Pradeepkiran JA; Kumar S; Vijayan M; Reddy AP; Reddy PH
    Free Radic Biol Med; 2021 Aug; 172():652-667. PubMed ID: 34246776
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Isoform-specific hyperactivation of calpain-2 occurs presymptomatically at the synapse in Alzheimer's disease mice and correlates with memory deficits in human subjects.
    Ahmad F; Das D; Kommaddi RP; Diwakar L; Gowaikar R; Rupanagudi KV; Bennett DA; Ravindranath V
    Sci Rep; 2018 Sep; 8(1):13119. PubMed ID: 30177812
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Drebrin in Alzheimer's Disease.
    Ishizuka Y; Hanamura K
    Adv Exp Med Biol; 2017; 1006():203-223. PubMed ID: 28865022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.