These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 35073787)

  • 61. NMDA neurotransmission dysfunction in mild cognitive impairment and Alzheimer's disease.
    Lin CH; Huang YJ; Lin CJ; Lane HY; Tsai GE
    Curr Pharm Des; 2014; 20(32):5169-79. PubMed ID: 24410566
    [TBL] [Abstract][Full Text] [Related]  

  • 62. GABAergic Inhibitory Interneuron Deficits in Alzheimer's Disease: Implications for Treatment.
    Xu Y; Zhao M; Han Y; Zhang H
    Front Neurosci; 2020; 14():660. PubMed ID: 32714136
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Alzheimer's disease as a synaptopathy: Evidence for dysfunction of synapses during disease progression.
    Meftah S; Gan J
    Front Synaptic Neurosci; 2023; 15():1129036. PubMed ID: 36970154
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer's disease and neuronal loss.
    Ager RR; Davis JL; Agazaryan A; Benavente F; Poon WW; LaFerla FM; Blurton-Jones M
    Hippocampus; 2015 Jul; 25(7):813-26. PubMed ID: 25530343
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Metabotropic Glutamate Receptors in Alzheimer's Disease Synaptic Dysfunction: Therapeutic Opportunities and Hope for the Future.
    Srivastava A; Das B; Yao AY; Yan R
    J Alzheimers Dis; 2020; 78(4):1345-1361. PubMed ID: 33325389
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Mechanism of Oxidative Stress and Synapse Dysfunction in the Pathogenesis of Alzheimer's Disease: Understanding the Therapeutics Strategies.
    Kamat PK; Kalani A; Rai S; Swarnkar S; Tota S; Nath C; Tyagi N
    Mol Neurobiol; 2016 Jan; 53(1):648-661. PubMed ID: 25511446
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Tau Oligomers: The Toxic Player at Synapses in Alzheimer's Disease.
    Guerrero-Muñoz MJ; Gerson J; Castillo-Carranza DL
    Front Cell Neurosci; 2015; 9():464. PubMed ID: 26696824
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Synaptic Plasticity, Dementia and Alzheimer Disease.
    Skaper SD; Facci L; Zusso M; Giusti P
    CNS Neurol Disord Drug Targets; 2017; 16(3):220-233. PubMed ID: 28088900
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Intracellular Trafficking Mechanisms of Synaptic Dysfunction in Alzheimer's Disease.
    Perdigão C; Barata MA; Araújo MN; Mirfakhar FS; Castanheira J; Guimas Almeida C
    Front Cell Neurosci; 2020; 14():72. PubMed ID: 32362813
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Riluzole rescues glutamate alterations, cognitive deficits, and tau pathology associated with P301L tau expression.
    Hunsberger HC; Weitzner DS; Rudy CC; Hickman JE; Libell EM; Speer RR; Gerhardt GA; Reed MN
    J Neurochem; 2015 Oct; 135(2):381-94. PubMed ID: 26146790
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Synaptic Mitochondria: An Early Target of Amyloid-β and Tau in Alzheimer's Disease.
    Torres AK; Jara C; Park-Kang HS; Polanco CM; Tapia D; Alarcón F; de la Peña A; Llanquinao J; Vargas-Mardones G; Indo JA; Inestrosa NC; Tapia-Rojas C
    J Alzheimers Dis; 2021; 84(4):1391-1414. PubMed ID: 34719499
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Stress-Induced Synaptic Dysfunction and Neurotransmitter Release in Alzheimer's Disease: Can Neurotransmitters and Neuromodulators be Potential Therapeutic Targets?
    Jha SK; Jha NK; Kumar D; Sharma R; Shrivastava A; Ambasta RK; Kumar P
    J Alzheimers Dis; 2017; 57(4):1017-1039. PubMed ID: 27662312
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Adverse psychological impact, glutamatergic dysfunction, and risk factors for Alzheimer's disease.
    Myhrer T
    Neurosci Biobehav Rev; 1998; 23(1):131-9. PubMed ID: 9861617
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Down-regulation of glutamatergic terminals (VGLUT1) driven by Aβ in Alzheimer's disease.
    Rodriguez-Perdigon M; Tordera RM; Gil-Bea FJ; Gerenu G; Ramirez MJ; Solas M
    Hippocampus; 2016 Oct; 26(10):1303-12. PubMed ID: 27258819
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Heterogeneous Association of Alzheimer's Disease-Linked Amyloid-β and Amyloid-β Protein Precursor with Synapses.
    Willén K; Sroka A; Takahashi RH; Gouras GK
    J Alzheimers Dis; 2017; 60(2):511-524. PubMed ID: 28869466
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The intersection of amyloid β and tau in glutamatergic synaptic dysfunction and collapse in Alzheimer's disease.
    Crimins JL; Pooler A; Polydoro M; Luebke JI; Spires-Jones TL
    Ageing Res Rev; 2013 Jun; 12(3):757-63. PubMed ID: 23528367
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Glutamate and Alzheimer's disease].
    Gazulla J; Cavero-Nagore M
    Rev Neurol; 2006 Apr 1-15; 42(7):427-32. PubMed ID: 16602060
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Alzheimer's disease: targeting the glutamatergic system.
    Conway ME
    Biogerontology; 2020 Jun; 21(3):257-274. PubMed ID: 32048098
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Bis(propyl)-cognitin Prevents β-amyloid-induced Memory Deficits as Well as Synaptic Formation and Plasticity Impairments via the Activation of PI3-K Pathway.
    Jiang L; Huang M; Xu S; Wang Y; An P; Feng C; Chen X; Wei X; Han Y; Wang Q
    Mol Neurobiol; 2016 Aug; 53(6):3832-3841. PubMed ID: 26160762
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Synaptic Impairment in Alzheimer's Disease: A Dysregulated Symphony.
    Forner S; Baglietto-Vargas D; Martini AC; Trujillo-Estrada L; LaFerla FM
    Trends Neurosci; 2017 Jun; 40(6):347-357. PubMed ID: 28494972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.