These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 35073787)

  • 81. Involvement of Cholinergic, Adrenergic, and Glutamatergic Network Modulation with Cognitive Dysfunction in Alzheimer's Disease.
    Cheng YJ; Lin CH; Lane HY
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33668976
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Amyloid beta peptides and glutamatergic synaptic dysregulation.
    Parameshwaran K; Dhanasekaran M; Suppiramaniam V
    Exp Neurol; 2008 Mar; 210(1):7-13. PubMed ID: 18053990
    [TBL] [Abstract][Full Text] [Related]  

  • 83. APOE-Sensitive Cholinergic Sprouting Compensates for Hippocampal Dysfunctions Due to Reduced Entorhinal Input.
    Bott JB; Héraud C; Cosquer B; Herbeaux K; Aubert J; Sartori M; Goutagny R; Mathis C
    J Neurosci; 2016 Oct; 36(40):10472-10486. PubMed ID: 27707979
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Riluzole ameliorates soluble Aβ
    Yang Y; Ji WG; Zhang YJ; Zhou LP; Chen H; Yang N; Zhu ZR
    Prog Neuropsychopharmacol Biol Psychiatry; 2021 Jun; 108():110077. PubMed ID: 32818535
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Molecular mechanisms of Alzheimer's disease: From therapeutic targets to promising drugs.
    Alan E; Kerry Z; Sevin G
    Fundam Clin Pharmacol; 2023 Jun; 37(3):397-427. PubMed ID: 36576325
    [TBL] [Abstract][Full Text] [Related]  

  • 86. TNF-α-mediated reduction in inhibitory neurotransmission precedes sporadic Alzheimer's disease pathology in young Trem2
    Ren S; Breuillaud L; Yao W; Yin T; Norris KA; Zehntner SP; D'Adamio L
    J Biol Chem; 2021; 296():100089. PubMed ID: 33434745
    [TBL] [Abstract][Full Text] [Related]  

  • 87. GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer's disease.
    Bi D; Wen L; Wu Z; Shen Y
    Alzheimers Dement; 2020 Sep; 16(9):1312-1329. PubMed ID: 32543726
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Urokinase-Type Plasminogen Activator Protects Cerebral Cortical Neurons from Soluble Aβ-Induced Synaptic Damage.
    Diaz A; Merino P; Guo JD; Yepes MA; McCann P; Katta T; Tong EM; Torre E; Rangaraju S; Yepes M
    J Neurosci; 2020 May; 40(21):4251-4263. PubMed ID: 32332118
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Defective mitophagy and synaptic degeneration in Alzheimer's disease: Focus on aging, mitochondria and synapse.
    Morton H; Kshirsagar S; Orlov E; Bunquin LE; Sawant N; Boleng L; George M; Basu T; Ramasubramanian B; Pradeepkiran JA; Kumar S; Vijayan M; Reddy AP; Reddy PH
    Free Radic Biol Med; 2021 Aug; 172():652-667. PubMed ID: 34246776
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Glutamatergic systems in Alzheimer's disease.
    Francis PT
    Int J Geriatr Psychiatry; 2003 Sep; 18(Suppl 1):S15-21. PubMed ID: 12973746
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Deregulation of excitatory neurotransmission underlying synapse failure in Alzheimer's disease.
    Paula-Lima AC; Brito-Moreira J; Ferreira ST
    J Neurochem; 2013 Jul; 126(2):191-202. PubMed ID: 23668663
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Synaptic Dysfunction in Alzheimer's Disease: Aβ, Tau, and Epigenetic Alterations.
    Li K; Wei Q; Liu FF; Hu F; Xie AJ; Zhu LQ; Liu D
    Mol Neurobiol; 2018 Apr; 55(4):3021-3032. PubMed ID: 28456942
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Mitochondrial Aspects of Synaptic Dysfunction in Alzheimer's Disease.
    Cai Q; Tammineni P
    J Alzheimers Dis; 2017; 57(4):1087-1103. PubMed ID: 27767992
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Emerging pathways driving early synaptic pathology in Alzheimer's disease.
    Briggs CA; Chakroborty S; Stutzmann GE
    Biochem Biophys Res Commun; 2017 Feb; 483(4):988-997. PubMed ID: 27659710
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Neuropathologic changes in Alzheimer's disease: potential targets for treatment.
    Wenk GL
    J Clin Psychiatry; 2006; 67 Suppl 3():3-7; quiz 23. PubMed ID: 16649845
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Neurobiology, Functions, and Relevance of Excitatory Amino Acid Transporters (EAATs) to Treatment of Refractory Epilepsy.
    Zaitsev AV; Smolensky IV; Jorratt P; Ovsepian SV
    CNS Drugs; 2020 Nov; 34(11):1089-1103. PubMed ID: 32926322
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Riluzole: a therapeutic strategy in Alzheimer's disease by targeting the WNT/β-catenin pathway.
    Vallée A; Vallée JN; Guillevin R; Lecarpentier Y
    Aging (Albany NY); 2020 Feb; 12(3):3095-3113. PubMed ID: 32035419
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Amyloid-β-Induced Dysregulation of AMPA Receptor Trafficking.
    Guntupalli S; Widagdo J; Anggono V
    Neural Plast; 2016; 2016():3204519. PubMed ID: 27073700
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Reduction of synaptojanin 1 ameliorates synaptic and behavioral impairments in a mouse model of Alzheimer's disease.
    McIntire LB; Berman DE; Myaeng J; Staniszewski A; Arancio O; Di Paolo G; Kim TW
    J Neurosci; 2012 Oct; 32(44):15271-6. PubMed ID: 23115165
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Amyloid Fibril-Induced Astrocytic Glutamate Transporter Disruption Contributes to Complement C1q-Mediated Microglial Pruning of Glutamatergic Synapses.
    Wu J; Bie B; Foss JF; Naguib M
    Mol Neurobiol; 2020 May; 57(5):2290-2300. PubMed ID: 32008166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.