BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 35073895)

  • 1. Input from torus longitudinalis drives binocularity and spatial summation in zebrafish optic tectum.
    Tesmer AL; Fields NP; Robles E
    BMC Biol; 2022 Jan; 20(1):24. PubMed ID: 35073895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuron types in the zebrafish optic tectum labeled by an id2b transgene.
    DeMarco E; Xu N; Baier H; Robles E
    J Comp Neurol; 2020 May; 528(7):1173-1188. PubMed ID: 31725916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyramidal Neurons of the Zebrafish Tectum Receive Highly Convergent Input From Torus Longitudinalis.
    DeMarco E; Tesmer AL; Hech B; Kawakami K; Robles E
    Front Neuroanat; 2021; 15():636683. PubMed ID: 33613200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The zebrafish visual system transmits dimming information via multiple segregated pathways.
    Robles E; Fields NP; Baier H
    J Comp Neurol; 2021 Feb; 529(3):539-552. PubMed ID: 32484919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinotectal circuitry of larval zebrafish is adapted to detection and pursuit of prey.
    Förster D; Helmbrecht TO; Mearns DS; Jordan L; Mokayes N; Baier H
    Elife; 2020 Oct; 9():. PubMed ID: 33044168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precise lamination of retinal axons generates multiple parallel input pathways in the tectum.
    Robles E; Filosa A; Baier H
    J Neurosci; 2013 Mar; 33(11):5027-39. PubMed ID: 23486973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direction selectivity in the visual system of the zebrafish larva.
    Gebhardt C; Baier H; Del Bene F
    Front Neural Circuits; 2013; 7():111. PubMed ID: 23785314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative electrophysiological studies of regenerating visuotopic maps in goldfish--I. Early recovery of dimming sensitivity in tectum and torus longitudinalis.
    Northmore DP
    Neuroscience; 1989; 32(3):739-47. PubMed ID: 2601842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergent properties of the optic tectum revealed by population analysis of direction and orientation selectivity.
    Hunter PR; Lowe AS; Thompson ID; Meyer MP
    J Neurosci; 2013 Aug; 33(35):13940-5. PubMed ID: 23986231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual Experience Facilitates BDNF-Dependent Adaptive Recruitment of New Neurons in the Postembryonic Optic Tectum.
    Hall ZJ; Tropepe V
    J Neurosci; 2018 Feb; 38(8):2000-2014. PubMed ID: 29363581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The visual system of the Florida garfish, Lepisosteus platyrhincus (Ginglymodi). IV. Bilateral projections and the binocular visual field.
    Collin SP; Northcutt RG
    Brain Behav Evol; 1995; 45(1):34-53. PubMed ID: 7866770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visuomotor behaviors in larval zebrafish after GFP-guided laser ablation of the optic tectum.
    Roeser T; Baier H
    J Neurosci; 2003 May; 23(9):3726-34. PubMed ID: 12736343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parametric functional maps of visual inputs to the tectum.
    Nikolaou N; Lowe AS; Walker AS; Abbas F; Hunter PR; Thompson ID; Meyer MP
    Neuron; 2012 Oct; 76(2):317-324. PubMed ID: 23083735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct intertectal inputs are an integral component of the bilateral sensorimotor circuit for behavior in Xenopus tadpoles.
    Gambrill AC; Faulkner RL; Cline HT
    J Neurophysiol; 2018 May; 119(5):1947-1961. PubMed ID: 29442555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomy and Connectivity of the Torus Longitudinalis of the Adult Zebrafish.
    Folgueira M; Riva-Mendoza S; Ferreño-Galmán N; Castro A; Bianco IH; Anadón R; Yáñez J
    Front Neural Circuits; 2020; 14():8. PubMed ID: 32231522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Three-Layer Network Model of Direction Selective Circuits in the Optic Tectum.
    Abbas F; Triplett MA; Goodhill GJ; Meyer MP
    Front Neural Circuits; 2017; 11():88. PubMed ID: 29209178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An interhemispheric neural circuit allowing binocular integration in the optic tectum.
    Gebhardt C; Auer TO; Henriques PM; Rajan G; Duroure K; Bianco IH; Del Bene F
    Nat Commun; 2019 Nov; 10(1):5471. PubMed ID: 31784529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Emergence of the Spatial Structure of Tectal Spontaneous Activity Is Independent of Visual Inputs.
    Pietri T; Romano SA; Pérez-Schuster V; Boulanger-Weill J; Candat V; Sumbre G
    Cell Rep; 2017 May; 19(5):939-948. PubMed ID: 28467907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Putative targets of direction-selective retinal ganglion cells in the tectum opticum of cyprinid fish.
    Damjanović I; Maximov PV; Aliper AT; Zaichikova AA; Gačić Z; Maximova EM
    Brain Res; 2019 Apr; 1708():20-26. PubMed ID: 30527677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a neurotransmitter role of aspartate and/or glutamate in the projection from the torus longitudinalis to the optic tectum of the goldfish.
    Poli A; Villani L; Migani P; Munarini A; Contestabile A
    Neuroscience; 1984 Aug; 12(4):1157-65. PubMed ID: 6148715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.