These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35073995)

  • 1. IDEAS: individual level differential expression analysis for single-cell RNA-seq data.
    Zhang M; Liu S; Miao Z; Han F; Gottardo R; Sun W
    Genome Biol; 2022 Jan; 23(1):33. PubMed ID: 35073995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of differentially abundant cell subpopulations in scRNA-seq data.
    Zhao J; Jaffe A; Li H; Lindenbaum O; Sefik E; Jackson R; Cheng X; Flavell RA; Kluger Y
    Proc Natl Acad Sci U S A; 2021 Jun; 118(22):. PubMed ID: 34001664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyzing master regulators and scRNA-seq of COVID-19 patients reveals an underlying anti-SARS-CoV-2 mechanism of ZNF proteins.
    Qin S; Xu W; Wang C; Jiang S; Dai W; Yang Y; Shen J; Jin P; Ma F; Xia X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33907801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepDRIM: a deep neural network to reconstruct cell-type-specific gene regulatory network using single-cell RNA-seq data.
    Chen J; Cheong C; Lan L; Zhou X; Liu J; Lyu A; Cheung WK; Zhang L
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34424948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scDEA: differential expression analysis in single-cell RNA-sequencing data via ensemble learning.
    Li HS; Ou-Yang L; Zhu Y; Yan H; Zhang XF
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bias, robustness and scalability in single-cell differential expression analysis.
    Soneson C; Robinson MD
    Nat Methods; 2018 Apr; 15(4):255-261. PubMed ID: 29481549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of cell markers from single cell RNA-seq with sc2marker.
    Li R; Banjanin B; Schneider RK; Costa IG
    BMC Bioinformatics; 2022 Jul; 23(1):276. PubMed ID: 35831796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovering single-cell eQTLs from scRNA-seq data only.
    Ma T; Li H; Zhang X
    Gene; 2022 Jun; 829():146520. PubMed ID: 35452708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of high variability in gene expression from single-cell RNA-seq profiling.
    Chen HI; Jin Y; Huang Y; Chen Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvements Achieved by Multiple Imputation for Single-Cell RNA-Seq Data in Clustering Analysis and Differential Expression Analysis.
    Zhu M; Lai Y
    J Comput Biol; 2022 Jul; 29(7):634-649. PubMed ID: 35575729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse weighting method with jackknife variance estimator for differential expression analysis of single-cell RNA sequencing data.
    Zhou L; Pan Q
    Comput Biol Chem; 2022 Oct; 100():107733. PubMed ID: 35926443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scCODE: an R package for data-specific differentially expressed gene detection on single-cell RNA-sequencing data.
    Zou J; Deng F; Wang M; Zhang Z; Liu Z; Zhang X; Hua R; Chen K; Zou X; Hao J
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35598331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Cell RNA Sequencing (scRNA-Seq) Data Analysis of Retinal Homeostasis and Degeneration of Microglia.
    Saddala MS; Mundla S; Patyal N; Dash S
    Methods Mol Biol; 2023; 2678():91-106. PubMed ID: 37326706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data.
    Mah CK; Wenzel AT; Juarez EF; Tabor T; Reich MM; Mesirov JP
    F1000Res; 2018; 7():1306. PubMed ID: 31316748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scGGAN: single-cell RNA-seq imputation by graph-based generative adversarial network.
    Huang Z; Wang J; Lu X; Mohd Zain A; Yu G
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36733262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PieParty: visualizing cells from scRNA-seq data as pie charts.
    Kurtenbach S; Dollar JJ; Cruz AM; Durante MA; Decatur CL; Harbour JW
    Life Sci Alliance; 2021 May; 4(5):. PubMed ID: 33674364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protocol for Identification and Removal of Doublets with DoubletDecon.
    DePasquale EAK; Schnell D; Chetal K; Salomonis N
    STAR Protoc; 2020 Sep; 1(2):100085. PubMed ID: 33111118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel f-divergence based generative adversarial imputation method for scRNA-seq data analysis.
    Si T; Hopkins Z; Yanev J; Hou J; Gong H
    PLoS One; 2023; 18(11):e0292792. PubMed ID: 37948433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.