BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 35074002)

  • 1. Proteomic profiling in cerebral amyloid angiopathy reveals an overlap with CADASIL highlighting accumulation of HTRA1 and its substrates.
    Zellner A; Müller SA; Lindner B; Beaufort N; Rozemuller AJM; Arzberger T; Gassen NC; Lichtenthaler SF; Kuster B; Haffner C; Dichgans M
    Acta Neuropathol Commun; 2022 Jan; 10(1):6. PubMed ID: 35074002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CADASIL brain vessels show a HTRA1 loss-of-function profile.
    Zellner A; Scharrer E; Arzberger T; Oka C; Domenga-Denier V; Joutel A; Lichtenthaler SF; Müller SA; Dichgans M; Haffner C
    Acta Neuropathol; 2018 Jul; 136(1):111-125. PubMed ID: 29725820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomics analysis identifies new markers associated with capillary cerebral amyloid angiopathy in Alzheimer's disease.
    Hondius DC; Eigenhuis KN; Morrema THJ; van der Schors RC; van Nierop P; Bugiani M; Li KW; Hoozemans JJM; Smit AB; Rozemuller AJM
    Acta Neuropathol Commun; 2018 Jun; 6(1):46. PubMed ID: 29860944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overlapping Protein Accumulation Profiles of CADASIL and CAA: Is There a Common Mechanism Driving Cerebral Small-Vessel Disease?
    Young KZ; Xu G; Keep SG; Borjigin J; Wang MM
    Am J Pathol; 2021 Nov; 191(11):1871-1887. PubMed ID: 33387456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A distinct brain beta amyloid signature in cerebral amyloid angiopathy compared to Alzheimer's disease.
    Gkanatsiou E; Portelius E; Toomey CE; Blennow K; Zetterberg H; Lashley T; Brinkmalm G
    Neurosci Lett; 2019 May; 701():125-131. PubMed ID: 30807796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review: cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy.
    Carare RO; Hawkes CA; Jeffrey M; Kalaria RN; Weller RO
    Neuropathol Appl Neurobiol; 2013 Oct; 39(6):593-611. PubMed ID: 23489283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteopontin and phospho-SMAD2/3 are associated with calcification of vessels in D-CAA, an hereditary cerebral amyloid angiopathy.
    Grand Moursel L; van der Graaf LM; Bulk M; van Roon-Mom WMC; van der Weerd L
    Brain Pathol; 2019 Nov; 29(6):793-802. PubMed ID: 30868685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sushi repeat-containing protein 1: a novel disease-associated molecule in cerebral amyloid angiopathy.
    Inoue Y; Ueda M; Tasaki M; Takeshima A; Nagatoshi A; Masuda T; Misumi Y; Kosaka T; Nomura T; Mizukami M; Matsumoto S; Yamashita T; Takahashi H; Kakita A; Ando Y
    Acta Neuropathol; 2017 Oct; 134(4):605-617. PubMed ID: 28478503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue transglutaminase colocalizes with extracellular matrix proteins in cerebral amyloid angiopathy.
    de Jager M; van der Wildt B; Schul E; Bol JG; van Duinen SG; Drukarch B; Wilhelmus MM
    Neurobiol Aging; 2013 Apr; 34(4):1159-69. PubMed ID: 23122413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beta-amyloid pathology in human brain microvessel extracts from the parietal cortex: relation with cerebral amyloid angiopathy and Alzheimer's disease.
    Bourassa P; Tremblay C; Schneider JA; Bennett DA; Calon F
    Acta Neuropathol; 2019 May; 137(5):801-823. PubMed ID: 30729296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A1 reactive astrocytes and a loss of TREM2 are associated with an early stage of pathology in a mouse model of cerebral amyloid angiopathy.
    Taylor X; Cisternas P; You Y; You Y; Xiang S; Marambio Y; Zhang J; Vidal R; Lasagna-Reeves CA
    J Neuroinflammation; 2020 Jul; 17(1):223. PubMed ID: 32711525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The blood clotting Factor XIIIa forms unique complexes with amyloid-beta (Aβ) and colocalizes with deposited Aβ in cerebral amyloid angiopathy.
    de Jager M; Boot MV; Bol JG; Brevé JJ; Jongenelen CA; Drukarch B; Wilhelmus MM
    Neuropathol Appl Neurobiol; 2016 Apr; 42(3):255-72. PubMed ID: 25871449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MFG-E8 (LACTADHERIN): a novel marker associated with cerebral amyloid angiopathy.
    Marazuela P; Solé M; Bonaterra-Pastra A; Pizarro J; Camacho J; Martínez-Sáez E; Kuiperij HB; Verbeek MM; de Kort AM; Schreuder FHBM; Klijn CJM; Castillo-Ribelles L; Pancorbo O; Rodríguez-Luna D; Pujadas F; Delgado P; Hernández-Guillamon M
    Acta Neuropathol Commun; 2021 Sep; 9(1):154. PubMed ID: 34530925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current Management and Therapeutic Strategies for Cerebral Amyloid Angiopathy.
    Inoue Y; Ando Y; Misumi Y; Ueda M
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33918041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary microvascular degeneration in amyloid angiopathy of patients with hereditary cerebral hemorrhage with amyloidosis, Dutch type (HCHWA-D).
    Vinters HV; Natté R; Maat-Schieman ML; van Duinen SG; Hegeman-Kleinn I; Welling-Graafland C; Haan J; Roos RA
    Acta Neuropathol; 1998 Mar; 95(3):235-44. PubMed ID: 9542588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microvascular degeneration in hereditary cystatin C amyloid angiopathy of the brain.
    Wang ZZ; Jensson O; Thorsteinsson L; Vinters HV
    APMIS; 1997 Jan; 105(1):41-7. PubMed ID: 9063500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical atrophy in patients with cerebral amyloid angiopathy: a case-control study.
    Fotiadis P; van Rooden S; van der Grond J; Schultz A; Martinez-Ramirez S; Auriel E; Reijmer Y; van Opstal AM; Ayres A; Schwab KM; ; Hedden T; Rosand J; Viswanathan A; Wermer M; Terwindt G; Sperling RA; Polimeni JR; Johnson KA; van Buchem MA; Greenberg SM; Gurol ME
    Lancet Neurol; 2016 Jul; 15(8):811-819. PubMed ID: 27180034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systems proteomic analysis reveals that clusterin and tissue inhibitor of metalloproteinases 3 increase in leptomeningeal arteries affected by cerebral amyloid angiopathy.
    Manousopoulou A; Gatherer M; Smith C; Nicoll JAR; Woelk CH; Johnson M; Kalaria R; Attems J; Garbis SD; Carare RO
    Neuropathol Appl Neurobiol; 2017 Oct; 43(6):492-504. PubMed ID: 27543695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined Transcriptomic and Proteomic Analyses of Cerebral Frontal Lobe Tissue Identified RNA Metabolism Dysregulation as One Potential Pathogenic Mechanism in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL).
    Ritz MF; Jenoe P; Bonati L; Engelter S; Lyrer P; Peters N
    Curr Neurovasc Res; 2019; 16(5):481-493. PubMed ID: 31657685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small heat shock protein HspB8: its distribution in Alzheimer's disease brains and its inhibition of amyloid-beta protein aggregation and cerebrovascular amyloid-beta toxicity.
    Wilhelmus MM; Boelens WC; Otte-Höller I; Kamps B; Kusters B; Maat-Schieman ML; de Waal RM; Verbeek MM
    Acta Neuropathol; 2006 Feb; 111(2):139-49. PubMed ID: 16485107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.