These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35074101)

  • 1. Enhanced mechanical properties and biocompatibility on BC/HAp composite through calcium gluconate fortified bacterial.
    Shi L; Wang T; Yang L; Chen C; Dou R; Yang X; Sun B; Zhou B; Zhang L; Sun D
    Carbohydr Polym; 2022 Apr; 281():119085. PubMed ID: 35074101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase.
    Jiang P; Ran J; Yan P; Zheng L; Shen X; Tong H
    J Biomater Sci Polym Ed; 2018 Feb; 29(2):107-124. PubMed ID: 29140181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing multi-component organic/inorganic composite bacterial cellulose-gelatin/hydroxyapatite double-network scaffold platform for stem cell-mediated bone tissue engineering.
    Ran J; Jiang P; Liu S; Sun G; Yan P; Shen X; Tong H
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():130-140. PubMed ID: 28575967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic design of platelet-rich plasma controlled release bacterial cellulose/hydroxyapatite composite hydrogel for bone tissue engineering.
    Wang X; Yang X; Xiao X; Li X; Chen C; Sun D
    Int J Biol Macromol; 2024 Jun; 269(Pt 2):132124. PubMed ID: 38723802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility and Biological Efficiency of Inorganic Calcium Filled Bacterial Cellulose Based Hydrogel Scaffolds for Bone Bioengineering.
    Basu P; Saha N; Alexandrova R; Andonova-Lilova B; Georgieva M; Miloshev G; Saha P
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo.
    Wu M; Wu P; Xiao L; Zhao Y; Yan F; Liu X; Xie Y; Zhang C; Chen Y; Cai L
    Int J Biol Macromol; 2020 Nov; 162():1627-1641. PubMed ID: 32781127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulose Nanofibrils and Mechanism of their Mineralization in Biomimetic Synthesis of Hydroxyapatite/Native Bacterial Cellulose Nanocomposites: Molecular Dynamics Simulations.
    Lukasheva NV; Tolmachev DA
    Langmuir; 2016 Jan; 32(1):125-34. PubMed ID: 26652774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopamine-modified highly porous hydroxyapatite microtube networks with efficient near-infrared photothermal effect, enhanced protein adsorption and mineralization performance.
    Zhang YG; Zhu YJ; Chen F; Lu BQ
    Colloids Surf B Biointerfaces; 2017 Nov; 159():337-348. PubMed ID: 28818781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid materials for bone tissue engineering from biomimetic growth of hydroxiapatite on cellulose nanowhiskers.
    Fragal EH; Cellet TSP; Fragal VH; Companhoni MVP; Ueda-Nakamura T; Muniz EC; Silva R; Rubira AF
    Carbohydr Polym; 2016 Nov; 152():734-746. PubMed ID: 27516325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of composite hydrogel based on hydroxyapatite mineralization over pectin reinforced with cellulose nanocrystal.
    Catori DM; Fragal EH; Messias I; Garcia FP; Nakamura CV; Rubira AF
    Int J Biol Macromol; 2021 Jan; 167():726-735. PubMed ID: 33285200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic growth of hydroxyapatite on phosphorylated electrospun cellulose nanofibers.
    Li K; Wang J; Liu X; Xiong X; Liu H
    Carbohydr Polym; 2012 Nov; 90(4):1573-81. PubMed ID: 22944418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications.
    Grande CJ; Torres FG; Gomez CM; Bañó MC
    Acta Biomater; 2009 Jun; 5(5):1605-15. PubMed ID: 19246264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Origin of the Biologically Accelerated Mineralization of Hydroxyapatite on Bacterial Cellulose for More Robust Nanocomposites.
    Chen C; Qian J; Chen H; Zhang H; Yang L; Jiang X; Zhang X; Li X; Ma J; Sun D
    Nano Lett; 2021 Dec; 21(24):10292-10300. PubMed ID: 34846904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering.
    Chen P; Liu L; Pan J; Mei J; Li C; Zheng Y
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():325-335. PubMed ID: 30678918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization.
    Joshi MK; Tiwari AP; Pant HR; Shrestha BK; Kim HJ; Park CH; Kim CS
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19672-83. PubMed ID: 26295953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [New Advances in the Application of Bacterial Cellulose Composite Materials in the Field of Bone Tissue Engineering].
    Luo C; Zhang L; Ran L; You X; Huang S
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2024 Mar; 55(2):243-248. PubMed ID: 38645860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ and Ex Situ Designed Hydroxyapatite: Bacterial Cellulose Materials with Biomedical Applications.
    Nicoara AI; Stoica AE; Ene DI; Vasile BS; Holban AM; Neacsu IA
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33121009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SEM and TEM for structure and properties characterization of bacterial cellulose/hydroxyapatite composites.
    Arkharova NA; Suvorova EI; Severin AV; Khripunov AK; Krasheninnikov SV; Klechkovskaya VV
    Scanning; 2016 Nov; 38(6):757-765. PubMed ID: 27171920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoconductive 3D porous composite scaffold from regenerated cellulose and cuttlebone-derived hydroxyapatite.
    Palaveniene A; Tamburaci S; Kimna C; Glambaite K; Baniukaitiene O; Tihminlioğlu F; Liesiene J
    J Biomater Appl; 2019 Jan; 33(6):876-890. PubMed ID: 30451067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas assisted in situ biomimetic mineralization of bacterial cellulose/calcium carbonate bio composites by bacterial.
    Sun B; Lin J; Wang T; Liu M; Yang L; Ma B; Chaudhary JP; Chen C; Sun D
    Int J Biol Macromol; 2021 Jul; 182():1690-1696. PubMed ID: 34058205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.