These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35074101)

  • 21. Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles.
    Kim H; Che L; Ha Y; Ryu W
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():324-35. PubMed ID: 24857500
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bone-Inspired Mineralization with Highly Aligned Cellulose Nanofibers as Template.
    Cheng Z; Ye Z; Natan A; Ma Y; Li H; Chen Y; Wan L; Aparicio C; Zhu H
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42486-42495. PubMed ID: 31638768
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering.
    Stumpf TR; Yang X; Zhang J; Cao X
    Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():372-383. PubMed ID: 29025671
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomimetic nanocomposite based on hydroxyapatite mineralization over chemically modified cellulose nanowhiskers: An active platform for osteoblast proliferation.
    Fragal EH; Cellet TSP; Fragal VH; Witt MA; Companhoni MVP; Ueda-Nakamura T; Silva R; Rubira AF
    Int J Biol Macromol; 2019 Mar; 125():133-142. PubMed ID: 30529209
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface controlled calcium phosphate formation on three-dimensional bacterial cellulose-based nanofibers.
    Luo H; Xiong G; Zhang C; Li D; Zhu Y; Guo R; Wan Y
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():526-533. PubMed ID: 25686980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosynthesis and characterization of hydroxyapatite and its composite (hydroxyapatite-gelatin-chitosan-fibrin-bone ash) for bone tissue engineering applications.
    Sathiyavimal S; Vasantharaj S; LewisOscar F; Pugazhendhi A; Subashkumar R
    Int J Biol Macromol; 2019 May; 129():844-852. PubMed ID: 30769044
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bone tissue engineering potentials of 3D printed magnesium-hydroxyapatite in polylactic acid composite scaffolds.
    Anita Lett J; Sagadevan S; Léonard E; Fatimah I; Motalib Hossain MA; Mohammad F; Al-Lohedan HA; Paiman S; Alshahateet SF; Abd Razak SI; Johan MR
    Artif Organs; 2021 Dec; 45(12):1501-1512. PubMed ID: 34309044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel composite scaffolds based on alginate and Mg-doped calcium phosphate fillers: Enhanced hydroxyapatite formation under biomimetic conditions.
    Stojkovska J; Zvicer J; Andrejevic M; Janackovic D; Obradovic B; Veljovic DN
    J Biomed Mater Res B Appl Biomater; 2021 Dec; 109(12):2079-2090. PubMed ID: 33955159
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing.
    Abouzeid RE; Khiari R; Salama A; Diab M; Beneventi D; Dufresne A
    Int J Biol Macromol; 2020 Oct; 160():538-547. PubMed ID: 32470581
    [TBL] [Abstract][Full Text] [Related]  

  • 30. "Tree to Bone": Lignin/Polycaprolactone Nanofibers for Hydroxyapatite Biomineralization.
    Wang D; Jang J; Kim K; Kim J; Park CB
    Biomacromolecules; 2019 Jul; 20(7):2684-2693. PubMed ID: 31117353
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro degradability and bioactivity of oxidized bacterial cellulose-hydroxyapatite composites.
    Luz EPCG; Chaves PHS; Vieira LAP; Ribeiro SF; Borges MF; Andrade FK; Muniz CR; Infantes-Molina A; Rodríguez-Castellón E; Rosa MF; Vieira RS
    Carbohydr Polym; 2020 Jun; 237():116174. PubMed ID: 32241452
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alginate/nanohydroxyapatite scaffolds with designed core/shell structures fabricated by 3D plotting and in situ mineralization for bone tissue engineering.
    Luo Y; Lode A; Wu C; Chang J; Gelinsky M
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6541-9. PubMed ID: 25761464
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Biomimetic mineralization of rod-like cellulose nano-whiskers and spectrum analysis].
    Qu P; Wang X; Cui XX; Zhang LP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 May; 32(5):1418-22. PubMed ID: 22827104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering.
    Zhou Y; Yao H; Wang J; Wang D; Liu Q; Li Z
    Int J Nanomedicine; 2015; 10():3203-15. PubMed ID: 25995630
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of biomimetic coating and cuttlebone microparticle reinforcement on the osteoconductive properties of cellulose-based scaffolds.
    Palaveniene A; Songailiene K; Baniukaitiene O; Tamburaci S; Kimna C; Tihminlioğlu F; Liesiene J
    Int J Biol Macromol; 2020 Jun; 152():1194-1204. PubMed ID: 31759022
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering.
    Katti KS; Katti DR; Dash R
    Biomed Mater; 2008 Sep; 3(3):034122. PubMed ID: 18765898
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity.
    Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regenerated cellulose nanofibers from cellulose acetate: Incorporating hydroxyapatite (HAp) and silver (Ag) nanoparticles (NPs), as a scaffold for tissue engineering applications.
    Sofi HS; Akram T; Shabir N; Vasita R; Jadhav AH; Sheikh FA
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111547. PubMed ID: 33255098
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomimetic Design of Double-Sided Functionalized Silver Nanoparticle/Bacterial Cellulose/Hydroxyapatite Hydrogel Mesh for Temporary Cranioplasty.
    Yang X; Huang J; Chen C; Zhou L; Ren H; Sun D
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):10506-10519. PubMed ID: 36800308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.
    Salarian M; Xu WZ; Wang Z; Sham TK; Charpentier PA
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16918-31. PubMed ID: 25184699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.