BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35074418)

  • 1. Assembly of Cas7 subunits of Leptospira on the mature crRNA of CRISPR-Cas I-B is modulated by divalent ions.
    Hussain MS; Kumar M
    Gene; 2022 Apr; 818():146244. PubMed ID: 35074418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual nuclease activity of a Cas2 protein in CRISPR-Cas subtype I-B of Leptospira interrogans.
    Dixit B; Ghosh KK; Fernandes G; Kumar P; Gogoi P; Kumar M
    FEBS Lett; 2016 Apr; 590(7):1002-16. PubMed ID: 26950513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential processing of CRISPR RNA by LinCas5c and LinCas6 of Leptospira.
    Anand V; Prabhakaran HS; Prakash A; Hussain MS; Kumar M
    Biochim Biophys Acta Gen Subj; 2023 Dec; 1867(12):130469. PubMed ID: 37797871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A complex of Cas proteins 5, 6, and 7 is required for the biogenesis and stability of clustered regularly interspaced short palindromic repeats (crispr)-derived rnas (crrnas) in Haloferax volcanii.
    Brendel J; Stoll B; Lange SJ; Sharma K; Lenz C; Stachler AE; Maier LK; Richter H; Nickel L; Schmitz RA; Randau L; Allers T; Urlaub H; Backofen R; Marchfelder A
    J Biol Chem; 2014 Mar; 289(10):7164-7177. PubMed ID: 24459147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural characterization of the type I-B CRISPR Cas7 from Thermobaculum terrenum.
    Seo PW; Gu DH; Kim JW; Kim JH; Park SY; Kim JS
    Biochim Biophys Acta Proteins Proteom; 2023 May; 1871(3):140900. PubMed ID: 36682394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional analysis of CRISPR I-B arrays of
    Prakash A; Kumar M
    Front Microbiol; 2022; 13():960559. PubMed ID: 35966677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic determinants of PAM-dependent DNA targeting and pre-crRNA processing in Sulfolobus islandicus.
    Peng W; Li H; Hallstrøm S; Peng N; Liang YX; She Q
    RNA Biol; 2013 May; 10(5):738-48. PubMed ID: 23392249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis of DNA targeting by a transposon-encoded CRISPR-Cas system.
    Halpin-Healy TS; Klompe SE; Sternberg SH; Fernández IS
    Nature; 2020 Jan; 577(7789):271-274. PubMed ID: 31853065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fragmentation of the CRISPR-Cas Type I-B signature protein Cas8b.
    Richter H; Rompf J; Wiegel J; Rau K; Randau L
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt B):2993-3000. PubMed ID: 28238733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and engineering of the type III-E CRISPR-Cas7-11 effector complex.
    Kato K; Zhou W; Okazaki S; Isayama Y; Nishizawa T; Gootenberg JS; Abudayyeh OO; Nishimasu H
    Cell; 2022 Jun; 185(13):2324-2337.e16. PubMed ID: 35643083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active site plasticity enables metal-dependent tuning of Cas5d nuclease activity in CRISPR-Cas type I-C system.
    Punetha A; Sivathanu R; Anand B
    Nucleic Acids Res; 2014 Apr; 42(6):3846-56. PubMed ID: 24371266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation and Stoichiometry of CRISPR-Cascade Complexes with Varying Spacer Lengths Revealed by Native Mass Spectrometry.
    Wittig S; Songailiene I; Schmidt C
    J Am Soc Mass Spectrom; 2020 Mar; 31(3):538-546. PubMed ID: 32008319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome editing in mammalian cells using the CRISPR type I-D nuclease.
    Osakabe K; Wada N; Murakami E; Miyashita N; Osakabe Y
    Nucleic Acids Res; 2021 Jun; 49(11):6347-6363. PubMed ID: 34076237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for inhibition of the type I-F CRISPR-Cas surveillance complex by AcrIF4, AcrIF7 and AcrIF14.
    Gabel C; Li Z; Zhang H; Chang L
    Nucleic Acids Res; 2021 Jan; 49(1):584-594. PubMed ID: 33332569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and function of a bacterial type III-E CRISPR-Cas7-11 complex.
    Yu G; Wang X; Zhang Y; An Q; Wen Y; Li X; Yin H; Deng Z; Zhang H
    Nat Microbiol; 2022 Dec; 7(12):2078-2088. PubMed ID: 36302881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate generation for endonucleases of CRISPR/cas systems.
    Zoephel J; Dwarakanath S; Richter H; Plagens A; Randau L
    J Vis Exp; 2012 Sep; (67):. PubMed ID: 22986408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Type III-A CRISPR-Cas Csm Complexes: Assembly, Periodic RNA Cleavage, DNase Activity Regulation, and Autoimmunity.
    Jia N; Mo CY; Wang C; Eng ET; Marraffini LA; Patel DJ
    Mol Cell; 2019 Jan; 73(2):264-277.e5. PubMed ID: 30503773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of CRISPR-Cas systems in Leptospira reveals potential application of CRISPR in genotyping of Leptospira interrogans.
    Xiao G; Yi Y; Che R; Zhang Q; Imran M; Khan A; Yan J; Lin X
    APMIS; 2019 Apr; 127(4):202-216. PubMed ID: 30908774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli.
    Zhao H; Sheng G; Wang J; Wang M; Bunkoczi G; Gong W; Wei Z; Wang Y
    Nature; 2014 Nov; 515(7525):147-50. PubMed ID: 25118175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mycobacterium tuberculosis type III-A CRISPR/Cas system crRNA and its maturation have atypical features.
    Wei W; Zhang S; Fleming J; Chen Y; Li Z; Fan S; Liu Y; Wang W; Wang T; Liu Y; Ren B; Wang M; Jiao J; Chen Y; Zhou Y; Zhou Y; Gu S; Zhang X; Wan L; Chen T; Zhou L; Chen Y; Zhang XE; Li C; Zhang H; Bi L
    FASEB J; 2019 Jan; 33(1):1496-1509. PubMed ID: 29979631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.