BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 35074482)

  • 1. PABP1 Drives the Selective Translation of Influenza A Virus mRNA.
    de Rozières CM; Pequeno A; Shahabi S; Lucas TM; Godula K; Ghosh G; Joseph S
    J Mol Biol; 2022 Mar; 434(5):167460. PubMed ID: 35074482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PABP1 and eIF4GI associate with influenza virus NS1 protein in viral mRNA translation initiation complexes.
    Burgui I; Aragón T; Ortín J; Nieto A
    J Gen Virol; 2003 Dec; 84(Pt 12):3263-3274. PubMed ID: 14645908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influenza A Virus NS1 Protein Binds as a Dimer to RNA-Free PABP1 but Not to the PABP1·Poly(A) RNA Complex.
    de Rozières CM; Joseph S
    Biochemistry; 2020 Nov; 59(46):4439-4448. PubMed ID: 33172261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pioneer translation initiation complex is functionally distinct from but structurally overlaps with the steady-state translation initiation complex.
    Chiu SY; Lejeune F; Ranganathan AC; Maquat LE
    Genes Dev; 2004 Apr; 18(7):745-54. PubMed ID: 15059963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Tacaribe Mammarenavirus Translation: Positive 5' and Negative 3' Elements and Role of Key Cellular Factors.
    Foscaldi S; D'Antuono A; Noval MG; de Prat Gay G; Scolaro L; Lopez N
    J Virol; 2017 Jul; 91(14):. PubMed ID: 28468879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA Modulates the Interaction between Influenza A Virus NS1 and Human PABP1.
    Arias-Mireles BH; de Rozieres CM; Ly K; Joseph S
    Biochemistry; 2018 Jul; 57(26):3590-3598. PubMed ID: 29782795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Migration of Small Ribosomal Subunits on the 5' Untranslated Regions of Capped Messenger RNA.
    Shirokikh NE; Dutikova YS; Staroverova MA; Hannan RD; Preiss T
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31510048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional impairment of eIF4A and eIF4G factors correlates with inhibition of influenza virus mRNA translation.
    Yángüez E; Castello A; Welnowska E; Carrasco L; Goodfellow I; Nieto A
    Virology; 2011 Apr; 413(1):93-102. PubMed ID: 21377182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eukaryotic translation initiation factor 4G (eIF4G) coordinates interactions with eIF4A, eIF4B, and eIF4E in binding and translation of the barley yellow dwarf virus 3' cap-independent translation element (BTE).
    Zhao P; Liu Q; Miller WA; Goss DJ
    J Biol Chem; 2017 Apr; 292(14):5921-5931. PubMed ID: 28242763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular cap-binding proteins associate with influenza virus mRNAs.
    Bier K; York A; Fodor E
    J Gen Virol; 2011 Jul; 92(Pt 7):1627-1634. PubMed ID: 21402597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of Mitogen-activated Protein Kinase (MAPK)-interacting Kinase (MNK) Preferentially Affects Translation of mRNAs Containing Both a 5'-Terminal Cap and Hairpin.
    Korneeva NL; Song A; Gram H; Edens MA; Rhoads RE
    J Biol Chem; 2016 Feb; 291(7):3455-67. PubMed ID: 26668315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rotavirus NSP3 Is a Translational Surrogate of the Poly(A) Binding Protein-Poly(A) Complex.
    Gratia M; Sarot E; Vende P; Charpilienne A; Baron CH; Duarte M; Pyronnet S; Poncet D
    J Virol; 2015 Sep; 89(17):8773-82. PubMed ID: 26063427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Host and viral translational mechanisms during cricket paralysis virus infection.
    Garrey JL; Lee YY; Au HH; Bushell M; Jan E
    J Virol; 2010 Jan; 84(2):1124-38. PubMed ID: 19889774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 5'-UTR recruitment of the translation initiation factor eIF4GI or DAP5 drives cap-independent translation of a subset of human mRNAs.
    Haizel SA; Bhardwaj U; Gonzalez RL; Mitra S; Goss DJ
    J Biol Chem; 2020 Aug; 295(33):11693-11706. PubMed ID: 32571876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eukaryotic initiation factor 4G-poly(A) binding protein interaction is required for poly(A) tail-mediated stimulation of picornavirus internal ribosome entry segment-driven translation but not for X-mediated stimulation of hepatitis C virus translation.
    Michel YM; Borman AM; Paulous S; Kean KM
    Mol Cell Biol; 2001 Jul; 21(13):4097-109. PubMed ID: 11390639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viral and cellular mRNA-specific activators harness PABP and eIF4G to promote translation initiation downstream of cap binding.
    Smith RWP; Anderson RC; Larralde O; Smith JWS; Gorgoni B; Richardson WA; Malik P; Graham SV; Gray NK
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6310-6315. PubMed ID: 28559344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nematode eukaryotic translation initiation factor 4E/G complex works with a trans-spliced leader stem-loop to enable efficient translation of trimethylguanosine-capped RNAs.
    Wallace A; Filbin ME; Veo B; McFarland C; Stepinski J; Jankowska-Anyszka M; Darzynkiewicz E; Davis RE
    Mol Cell Biol; 2010 Apr; 30(8):1958-70. PubMed ID: 20154140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of translation by human Unr requires cold shock domains 2 and 4, and correlates with poly(A) binding protein interaction.
    Ray S; Anderson EC
    Sci Rep; 2016 Mar; 6():22461. PubMed ID: 26936655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient translation initiation directed by the 900-nucleotide-long and GC-rich 5' untranslated region of the human retrotransposon LINE-1 mRNA is strictly cap dependent rather than internal ribosome entry site mediated.
    Dmitriev SE; Andreev DE; Terenin IM; Olovnikov IA; Prassolov VS; Merrick WC; Shatsky IN
    Mol Cell Biol; 2007 Jul; 27(13):4685-97. PubMed ID: 17470553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cap-independent translation and a precisely located RNA sequence enable SARS-CoV-2 to control host translation and escape anti-viral response.
    Slobodin B; Sehrawat U; Lev A; Hayat D; Zuckerman B; Fraticelli D; Ogran A; Ben-Shmuel A; Bar-David E; Levy H; Ulitsky I; Dikstein R
    Nucleic Acids Res; 2022 Aug; 50(14):8080-8092. PubMed ID: 35849342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.