These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Exploring second coordination sphere effects in nitric oxide synthase. McQuarters AB; Speelman AL; Chen L; Elmore BO; Fan W; Feng C; Lehnert N J Biol Inorg Chem; 2016 Dec; 21(8):997-1008. PubMed ID: 27686338 [TBL] [Abstract][Full Text] [Related]
23. Insights into the nitric oxide reductase mechanism of flavodiiron proteins from a flavin-free enzyme. Hayashi T; Caranto JD; Wampler DA; Kurtz DM; Moënne-Loccoz P Biochemistry; 2010 Aug; 49(33):7040-9. PubMed ID: 20669924 [TBL] [Abstract][Full Text] [Related]
24. Reactivity pathways for nitric oxide and nitrosonium with iron complexes in biologically relevant sulfur coordination spheres. Harrop TC; Song D; Lippard SJ J Inorg Biochem; 2007 Nov; 101(11-12):1730-8. PubMed ID: 17618690 [TBL] [Abstract][Full Text] [Related]
25. Thiolate Coordination vs C-S Bond Cleavage of Thiolates in Dinickel(II) Complexes. Das A; Ganguly T; Majumdar A Inorg Chem; 2021 Jan; 60(2):944-958. PubMed ID: 33405907 [TBL] [Abstract][Full Text] [Related]
26. Direct NO Reduction by a Biomimetic Iron(II) Pyrazolate MOF. Cai Z; Tao W; Moore CE; Zhang S; Wade CR Angew Chem Int Ed Engl; 2021 Sep; 60(39):21221-21225. PubMed ID: 34342117 [TBL] [Abstract][Full Text] [Related]
27. Origin of Nitric Oxide Reduction Activity in Flavo-Diiron NO Reductase: Key Roles of the Second Coordination Sphere. Lu J; Bi B; Lai W; Chen H Angew Chem Int Ed Engl; 2019 Mar; 58(12):3795-3799. PubMed ID: 30697895 [TBL] [Abstract][Full Text] [Related]
28. Tetranuclear iron(III) complexes of an octadentate pyridine-carboxylate ligand and their catalytic activity in alkane oxidation by hydrogen peroxide. Gutkina EA; Trukhan VM; Pierpont CG; Mkoyan S; Strelets VV; Nordlander E; Shteinman AA Dalton Trans; 2006 Jan; (3):492-501. PubMed ID: 16395449 [TBL] [Abstract][Full Text] [Related]
29. Synthesis and characterization of M(II) (M = Mn, Fe and Co) azafulvene complexes and their X3(-) derivatives. Matson EM; Park YJ; Bertke JA; Fout AR Dalton Trans; 2015 Jun; 44(22):10377-84. PubMed ID: 25970267 [TBL] [Abstract][Full Text] [Related]
30. Synthesis and spectroscopic studies of non-heme diiron(III) species with a terminal hydroperoxide ligand: models for hemerythrin. Mizoguchi TJ; Kuzelka J; Spingler B; DuBois JL; Davydov RM; Hedman B; Hodgson KO; Lippard SJ Inorg Chem; 2001 Aug; 40(18):4662-73. PubMed ID: 11511213 [TBL] [Abstract][Full Text] [Related]
31. Modeling features of the non-heme diiron cores in O2-activating enzymes through the synthesis, characterization, and oxidation of 1,8-naphthyridine-based complexes. Kuzelka J; Mukhopadhyay S; Spingler B; Lippard SJ Inorg Chem; 2003 Oct; 42(20):6447-57. PubMed ID: 14514321 [TBL] [Abstract][Full Text] [Related]
32. Modeling dioxygen-activating centers in non-heme diiron enzymes: carboxylate shifts in diiron(II) complexes supported by sterically hindered carboxylate ligands. Lee D; Lippard SJ Inorg Chem; 2002 May; 41(10):2704-19. PubMed ID: 12005495 [TBL] [Abstract][Full Text] [Related]
33. X-ray crystal structures of Moorella thermoacetica FprA. Novel diiron site structure and mechanistic insights into a scavenging nitric oxide reductase. Silaghi-Dumitrescu R; Kurtz DM; Ljungdahl LG; Lanzilotta WN Biochemistry; 2005 May; 44(17):6492-501. PubMed ID: 15850383 [TBL] [Abstract][Full Text] [Related]
34. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters. De La Cruz C; Sheppard N Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107 [TBL] [Abstract][Full Text] [Related]
35. Synthesis and spectroscopy of micro-oxo (O(2)(-))-bridged heme/non-heme diiron complexes: models for the active site of nitric oxide reductase. Wasser IM; Martens CF; Verani CN; Rentschler E; Huang HW; Moënne-Loccoz P; Zakharov LN; Rheingold AL; Karlin KD Inorg Chem; 2004 Jan; 43(2):651-62. PubMed ID: 14731027 [TBL] [Abstract][Full Text] [Related]
36. Formation, reactivity and redox properties of carbon- and sulfur-bridged diiron complexes derived from dibenzothienyl Schiff bases: effect of N,N- and N,P-chelating moieties. Santo K; Hirotsu M; Kinoshita I Dalton Trans; 2015 Mar; 44(9):4155-66. PubMed ID: 25623444 [TBL] [Abstract][Full Text] [Related]
38. Dicopper(II) complexes of H-BPMP-type ligands: pH-induced changes of redox, spectroscopic ((19)F NMR studies of fluorinated complexes), structural properties, and catecholase activities. Belle C; Beguin C; Gautier-Luneau I; Hamman S; Philouze C; Pierre JL; Thomas F; Torelli S; Saint-Aman E; Bonin M Inorg Chem; 2002 Feb; 41(3):479-91. PubMed ID: 11825074 [TBL] [Abstract][Full Text] [Related]
39. A facile biomimetic catalytic activity through hydrogen atom abstraction by the secondary coordination sphere in manganese(III) complexes. Jana NC; Brandão P; Frontera A; Panja A Dalton Trans; 2020 Oct; 49(40):14216-14230. PubMed ID: 33025999 [TBL] [Abstract][Full Text] [Related]
40. Models of the iron-only hydrogenase: a comparison of chelate and bridge isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-pdt) as proton-reduction catalysts. Ghosh S; Hogarth G; Hollingsworth N; Holt KB; Richards I; Richmond MG; Sanchez BE; Unwin D Dalton Trans; 2013 May; 42(19):6775-92. PubMed ID: 23503781 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]