BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35074688)

  • 1. Injury-induced Erk1/2 signaling tissue-specifically interacts with Ca
    Levin JB; Borodinsky LN
    Cell Calcium; 2022 Mar; 102():102540. PubMed ID: 35074688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-canonical Hedgehog signaling regulates spinal cord and muscle regeneration in
    Hamilton AM; Balashova OA; Borodinsky LN
    Elife; 2021 May; 10():. PubMed ID: 33955353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenic analysis of signaling pathways required for Xenopus tadpole spinal cord and muscle regeneration.
    Lin G; Chen Y; Slack JM
    Anat Rec (Hoboken); 2012 Oct; 295(10):1532-40. PubMed ID: 22933404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous calcium transients manifest in the regenerating muscle and are necessary for skeletal muscle replenishment.
    Tu MK; Borodinsky LN
    Cell Calcium; 2014 Jul; 56(1):34-41. PubMed ID: 24854233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells.
    Muñoz R; Edwards-Faret G; Moreno M; Zuñiga N; Cline H; Larraín J
    Dev Biol; 2015 Dec; 408(2):229-43. PubMed ID: 25797152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular response to spinal cord injury in regenerative and non-regenerative stages in Xenopus laevis.
    Edwards-Faret G; González-Pinto K; Cebrián-Silla A; Peñailillo J; García-Verdugo JM; Larraín J
    Neural Dev; 2021 Feb; 16(1):2. PubMed ID: 33526076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foxm1 regulates neural progenitor fate during spinal cord regeneration.
    Pelzer D; Phipps LS; Thuret R; Gallardo-Dodd CJ; Baker SM; Dorey K
    EMBO Rep; 2021 Sep; 22(9):e50932. PubMed ID: 34427977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Notochord-derived hedgehog is essential for tail regeneration in Xenopus tadpole.
    Taniguchi Y; Watanabe K; Mochii M
    BMC Dev Biol; 2014 Jun; 14():27. PubMed ID: 24941877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interleukin-6 induces proliferation in adult spinal cord-derived neural progenitors via the JAK2/STAT3 pathway with EGF-induced MAPK phosphorylation.
    Kang MK; Kang SK
    Cell Prolif; 2008 Jun; 41(3):377-92. PubMed ID: 18485152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative gene expression profiling between optic nerve and spinal cord injury in Xenopus laevis reveals a core set of genes inherent in successful regeneration of vertebrate central nervous system axons.
    Belrose JL; Prasad A; Sammons MA; Gibbs KM; Szaro BG
    BMC Genomics; 2020 Aug; 21(1):540. PubMed ID: 32758133
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Borodinsky LN
    Front Neural Circuits; 2017; 11():90. PubMed ID: 29218002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal cord regeneration in Xenopus laevis.
    Edwards-Faret G; Muñoz R; Méndez-Olivos EE; Lee-Liu D; Tapia VS; Larraín J
    Nat Protoc; 2017 Feb; 12(2):372-389. PubMed ID: 28102835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells.
    Gaete M; Muñoz R; Sánchez N; Tampe R; Moreno M; Contreras EG; Lee-Liu D; Larraín J
    Neural Dev; 2012 Apr; 7():13. PubMed ID: 22537391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of elongated-needle penetration intervention on spinal apoptosis and cell signal transduction in acute spinal cord injury rabbits].
    Chen RL; Quan RF; Xu SC; Ni YM; Zheng X; Xie SJ
    Zhen Ci Yan Jiu; 2014 Aug; 39(4):259-66, 277. PubMed ID: 25219119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upregulated Ras/Raf/ERK1/2 signaling pathway: a new hope in the repair of spinal cord injury.
    Liu T; Cao FJ; Xu DD; Xu YQ; Feng SQ
    Neural Regen Res; 2015 May; 10(5):792-6. PubMed ID: 26109956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substance P stimulates proliferation of spinal neural stem cells in spinal cord injury via the mitogen-activated protein kinase signaling pathway.
    Kim KT; Kim HJ; Cho DC; Bae JS; Park SW
    Spine J; 2015 Sep; 15(9):2055-65. PubMed ID: 25921821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axonal outgrowth and Erk1/2 activation by training after spinal cord injury in rats.
    Oh MJ; Seo TB; Kwon KB; Yoon SJ; Elzi DJ; Kim BG; Namgung U
    J Neurotrauma; 2009 Nov; 26(11):2071-82. PubMed ID: 19469685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adult-type myogenesis of the frog Xenopus laevis specifically suppressed by notochord cells but promoted by spinal cord cells in vitro.
    Yamane H; Ihara S; Kuroda M; Nishikawa A
    In Vitro Cell Dev Biol Anim; 2011 Aug; 47(7):470-83. PubMed ID: 21614652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal muscle signaling associated with impaired glucose tolerance in spinal cord-injured men and the effects of contractile activity.
    Yarar-Fisher C; Bickel CS; Windham ST; McLain AB; Bamman MM
    J Appl Physiol (1985); 2013 Sep; 115(5):756-64. PubMed ID: 23766505
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.