BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35074705)

  • 1. Determination of the spatial distribution of wetting in the pore networks of rocks.
    Garfi G; John CM; Rücker M; Lin Q; Spurin C; Berg S; Krevor S
    J Colloid Interface Sci; 2022 May; 613():786-795. PubMed ID: 35074705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the 3D molecular and mineralogical heterogeneity in oil reservoir rocks at the pore scale.
    Oliveira GJR; de Oliveira PC; Surmas R; Ferreira LP; Markötter H; Kardjilov N; Manke I; Montoro LA; Isaac A
    Sci Rep; 2019 Jun; 9(1):8263. PubMed ID: 31164712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pore-Scale Geochemical Reactivity Associated with CO
    Noiriel C; Daval D
    Acc Chem Res; 2017 Apr; 50(4):759-768. PubMed ID: 28362082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore Scale Observations of Trapped CO2 in Mixed-Wet Carbonate Rock: Applications to Storage in Oil Fields.
    Al-Menhali AS; Menke HP; Blunt MJ; Krevor SC
    Environ Sci Technol; 2016 Sep; 50(18):10282-90. PubMed ID: 27533473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pore-scale Imaging and Characterization of Hydrocarbon Reservoir Rock Wettability at Subsurface Conditions Using X-ray Microtomography.
    Alhammadi AM; AlRatrout A; Bijeljic B; Blunt MJ
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30394374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between wetting and capillary pressure in a crude oil/brine/rock system: From nano-scale to core-scale.
    Rücker M; Bartels WB; Garfi G; Shams M; Bultreys T; Boone M; Pieterse S; Maitland GC; Krevor S; Cnudde V; Mahani H; Berg S; Georgiadis A; Luckham PF
    J Colloid Interface Sci; 2020 Mar; 562():159-169. PubMed ID: 31838352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro/Nanopore Systems in Lacustrine Tight Oil Reservoirs, China.
    Li Q; Wu S; Zhai X; Pan S; Lin S
    J Nanosci Nanotechnol; 2021 Jan; 21(1):599-607. PubMed ID: 33213659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-porosity micromodels for studying multiphase fluid flow in carbonate rocks.
    Wolf FG; Siebert DN; Carreño MNP; Lopes AT; Zabot AM; Surmas R
    Lab Chip; 2022 Nov; 22(23):4680-4692. PubMed ID: 36346381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of sampling patterns for high-resolution compressed sensing MRI of porous materials: 'learning' from X-ray microcomputed tomography data.
    Karlsons K; DE Kort DW; Sederman AJ; Mantle MD; DE Jong H; Appel M; Gladden LF
    J Microsc; 2019 Nov; 276(2):63-81. PubMed ID: 31587277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of mineralogy and wettability on pore-scale displacement of NAPLs in heterogeneous porous media.
    Arshadi M; Gesho M; Qin T; Goual L; Piri M
    J Contam Hydrol; 2020 Mar; 230():103599. PubMed ID: 31932069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Droplet fragmentation: 3D imaging of a previously unidentified pore-scale process during multiphase flow in porous media.
    Pak T; Butler IB; Geiger S; van Dijke MI; Sorbie KS
    Proc Natl Acad Sci U S A; 2015 Feb; 112(7):1947-52. PubMed ID: 25646491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wettability of rock/CO
    Arif M; Abu-Khamsin SA; Iglauer S
    Adv Colloid Interface Sci; 2019 Jun; 268():91-113. PubMed ID: 30999164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-scale approach to assess total porosity and pore size in four different kinds of carbonate rocks.
    Nagata R; Dos Reis PJ; Appoloni CR
    Micron; 2023 Jan; 164():103385. PubMed ID: 36413960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking continuum-scale state of wetting to pore-scale contact angles in porous media.
    Sun C; McClure JE; Mostaghimi P; Herring AL; Shabaninejad M; Berg S; Armstrong RT
    J Colloid Interface Sci; 2020 Mar; 561():173-180. PubMed ID: 31812863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel fabrication of mixed wettability micromodels for pore-scale studies of fluid-rock interactions.
    AlOmier A; Cha D; Ayirala S; Al-Yousef A; Hoteit H
    Lab Chip; 2024 Feb; 24(4):882-895. PubMed ID: 38258315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real rock-microfluidic flow cell: A test bed for real-time in situ analysis of flow, transport, and reaction in a subsurface reactive transport environment.
    Singh R; Sivaguru M; Fried GA; Fouke BW; Sanford RA; Carrera M; Werth CJ
    J Contam Hydrol; 2017 Sep; 204():28-39. PubMed ID: 28802767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wettability control on multiphase flow in patterned microfluidics.
    Zhao B; MacMinn CW; Juanes R
    Proc Natl Acad Sci U S A; 2016 Sep; 113(37):10251-6. PubMed ID: 27559089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of contact angles for three-phase flow in porous media using an energy balance.
    Blunt MJ; Alhosani A; Lin Q; Scanziani A; Bijeljic B
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):283-290. PubMed ID: 32823129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of additives found in industrial formulations of TCE on the wettability of sandstone.
    Harrold G; Lerner DN; Leharne SA
    J Contam Hydrol; 2005 Nov; 80(1-2):1-17. PubMed ID: 16099534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New type of pore-snap-off and displacement correlations in imbibition.
    Singh K; Bultreys T; Raeini AQ; Shams M; Blunt MJ
    J Colloid Interface Sci; 2022 Mar; 609():384-392. PubMed ID: 34902675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.