These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 35074749)
1. Potential environmental risk of natural particulate cadmium and zinc in sphalerite- and smithsonite-spiked soils. Li X; Wu L; Zhou J; Luo Y; Zhou T; Li Z; Hu P; Christie P J Hazard Mater; 2022 May; 429():128313. PubMed ID: 35074749 [TBL] [Abstract][Full Text] [Related]
2. Potential mobilization of cadmium and zinc in soils spiked with smithsonite and sphalerite under different water management regimes. Li X; Zhou J; Zhou T; Li Z; Hu P; Luo Y; Christie P; Wu L J Environ Manage; 2022 Dec; 324():116336. PubMed ID: 36162317 [TBL] [Abstract][Full Text] [Related]
3. Legacy of contamination with metal(loid)s and their potential mobilization in soils at a carbonate-hosted lead-zinc mine area. Li X; Zhou T; Li Z; Wang W; Zhou J; Hu P; Luo Y; Christie P; Wu L Chemosphere; 2022 Dec; 308(Pt 3):136589. PubMed ID: 36162513 [TBL] [Abstract][Full Text] [Related]
4. Cadmium contamination of agricultural soils and crops resulting from sphalerite weathering. Robson TC; Braungardt CB; Rieuwerts J; Worsfold P Environ Pollut; 2014 Jan; 184():283-9. PubMed ID: 24077256 [TBL] [Abstract][Full Text] [Related]
5. Time-dependent changes of zinc speciation in four soils contaminated with zincite or sphalerite. Voegelin A; Jacquat O; Pfister S; Barmettler K; Scheinost AC; Kretzschmar R Environ Sci Technol; 2011 Jan; 45(1):255-61. PubMed ID: 21142002 [TBL] [Abstract][Full Text] [Related]
6. Zinc-sulfur and cadmium-sulfur association in metalliferous peats: evidence from spectroscopy, distribution coefficients, and phytoavailability. Martínez CE; McBride MB; Kandianis MT; Duxbury JM; Yoon SJ; Bleam WF Environ Sci Technol; 2002 Sep; 36(17):3683-9. PubMed ID: 12322738 [TBL] [Abstract][Full Text] [Related]
7. Zn mobility and geochemistry in surface sulfide mining soils from SE Spain. Garcia G; Peñas JM; Manteca JI Environ Res; 2008 Mar; 106(3):333-9. PubMed ID: 17560565 [TBL] [Abstract][Full Text] [Related]
8. Trace metal element pollution of soil and water resources caused by small-scale metallic ore mining activities: a case study from a sphalerite mine in North China. Lu J; Lu H; Lei K; Wang W; Guan Y Environ Sci Pollut Res Int; 2019 Aug; 26(24):24630-24644. PubMed ID: 31240649 [TBL] [Abstract][Full Text] [Related]
9. Use of Zinc Carbonate Spiking to Obtain Phytotoxicity Thresholds Comparable to Those in Field-Collected Soils. Grigorita G; Neaman A; Brykova R; Brykov VA; Morev DV; Ginocchio R; Paltseva AA; Vidal K; Navarro-Villarroel C; Dovletyarova EA Environ Toxicol Chem; 2020 Sep; 39(9):1790-1796. PubMed ID: 32593201 [TBL] [Abstract][Full Text] [Related]
10. Ultrafine multi-metal (Zn, Cd, Pb) sulfide aggregates formation in periodically water-logged organic soil. Smieja-Król B; Pawlyta M; Gałka M Sci Total Environ; 2022 May; 820():153308. PubMed ID: 35065111 [TBL] [Abstract][Full Text] [Related]
11. Associations of cadmium, zinc, and lead in soils from a lead and zinc mining area as studied by single and sequential extractions. Anju M; Banerjee DK Environ Monit Assess; 2011 May; 176(1-4):67-85. PubMed ID: 20652631 [TBL] [Abstract][Full Text] [Related]
12. Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions. de Livera J; McLaughlin MJ; Hettiarachchi GM; Kirby JK; Beak DG Sci Total Environ; 2011 Mar; 409(8):1489-97. PubMed ID: 21277005 [TBL] [Abstract][Full Text] [Related]
13. Zn speciation and fate in soils and sediments along the ground transportation route of Zn ore to a smelter. Kwon MJ; Boyanov MI; Mishra B; Kemner KM; Jeon SK; Hong JK; Lee S J Hazard Mater; 2022 Sep; 438():129422. PubMed ID: 35785740 [TBL] [Abstract][Full Text] [Related]
15. Evolution of the Speciation and Mobility of Pb, Zn and Cd in Relation to Transport Processes in a Mining Environment. Elmayel I; Esbrí JM; Efrén GO; García-Noguero EM; Elouear Z; Jalel B; Farieri A; Roqueñí N; Cienfuegos P; Higueras P Int J Environ Res Public Health; 2020 Jul; 17(14):. PubMed ID: 32650360 [TBL] [Abstract][Full Text] [Related]
16. An efficient biochar synthesized by iron-zinc modified corn straw for simultaneously immobilization Cd in acidic and alkaline soils. Yang T; Xu Y; Huang Q; Sun Y; Liang X; Wang L; Qin X; Zhao L Environ Pollut; 2021 Dec; 291():118129. PubMed ID: 34547658 [TBL] [Abstract][Full Text] [Related]
17. Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/smelter, South Poland: effects of land use, type of contamination and distance from pollution source. Chrastný V; Vaněk A; Teper L; Cabala J; Procházka J; Pechar L; Drahota P; Penížek V; Komárek M; Novák M Environ Monit Assess; 2012 Apr; 184(4):2517-36. PubMed ID: 21674226 [TBL] [Abstract][Full Text] [Related]
18. Experimental oxidative dissolution of sphalerite in the Aznalcollar sludge and other pyritic matrices. Hita R; Torrent J; Bigham JM J Environ Qual; 2006; 35(4):1032-9. PubMed ID: 16738388 [TBL] [Abstract][Full Text] [Related]
19. Effects of chemical speciation on the bioaccessibility of zinc in spiked and smelter-affected soils. Elikem E; Laird BD; Hamilton JG; Stewart KJ; Siciliano SD; Peak D Environ Toxicol Chem; 2019 Feb; 38(2):448-459. PubMed ID: 30525224 [TBL] [Abstract][Full Text] [Related]
20. Automated mineralogy for quantification and partitioning of metal(loid)s in particulates from mining/smelting-polluted soils. Tuhý M; Hrstka T; Ettler V Environ Pollut; 2020 Nov; 266(Pt 1):115118. PubMed ID: 32623271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]