These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 35075123)

  • 1. Hyperpolarised
    Sushentsev N; McLean MA; Warren AY; Benjamin AJV; Brodie C; Frary A; Gill AB; Jones J; Kaggie JD; Lamb BW; Locke MJ; Miller JL; Mills IG; Priest AN; Robb FJL; Shah N; Schulte RF; Graves MJ; Gnanapragasam VJ; Brindle KM; Barrett T; Gallagher FA
    Nat Commun; 2022 Jan; 13(1):466. PubMed ID: 35075123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor-stroma metabolic relationship based on lactate shuttle can sustain prostate cancer progression.
    Sanità P; Capulli M; Teti A; Galatioto GP; Vicentini C; Chiarugi P; Bologna M; Angelucci A
    BMC Cancer; 2014 Mar; 14():154. PubMed ID: 24597899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Androgens enhance the glycolytic metabolism and lactate export in prostate cancer cells by modulating the expression of GLUT1, GLUT3, PFK, LDH and MCT4 genes.
    Vaz CV; Marques R; Alves MG; Oliveira PF; Cavaco JE; Maia CJ; Socorro S
    J Cancer Res Clin Oncol; 2016 Jan; 142(1):5-16. PubMed ID: 26048031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The potential of hyperpolarised
    Sushentsev N; McLean MA; Warren AY; Brodie C; Jones J; Gallagher FA; Barrett T
    Eur Radiol; 2022 Oct; 32(10):7155-7162. PubMed ID: 35731287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Androgen-responsive and nonresponsive prostate cancer cells present a distinct glycolytic metabolism profile.
    Vaz CV; Alves MG; Marques R; Moreira PI; Oliveira PF; Maia CJ; Socorro S
    Int J Biochem Cell Biol; 2012 Nov; 44(11):2077-84. PubMed ID: 22964025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging breast cancer using hyperpolarized carbon-13 MRI.
    Gallagher FA; Woitek R; McLean MA; Gill AB; Manzano Garcia R; Provenzano E; Riemer F; Kaggie J; Chhabra A; Ursprung S; Grist JT; Daniels CJ; Zaccagna F; Laurent MC; Locke M; Hilborne S; Frary A; Torheim T; Boursnell C; Schiller A; Patterson I; Slough R; Carmo B; Kane J; Biggs H; Harrison E; Deen SS; Patterson A; Lanz T; Kingsbury Z; Ross M; Basu B; Baird R; Lomas DJ; Sala E; Wason J; Rueda OM; Chin SF; Wilkinson IB; Graves MJ; Abraham JE; Gilbert FJ; Caldas C; Brindle KM
    Proc Natl Acad Sci U S A; 2020 Jan; 117(4):2092-2098. PubMed ID: 31964840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting lactate production and efflux in prostate cancer.
    Pereira-Nunes A; Simões-Sousa S; Pinheiro C; Miranda-Gonçalves V; Granja S; Baltazar F
    Biochim Biophys Acta Mol Basis Dis; 2020 Nov; 1866(11):165894. PubMed ID: 32650130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic imaging across scales reveals distinct prostate cancer phenotypes.
    Sushentsev N; Hamm G; Flint L; Birtles D; Zakirov A; Richings J; Ling S; Tan JY; McLean MA; Ayyappan V; Horvat Menih I; Brodie C; Miller JL; Mills IG; Gnanapragasam VJ; Warren AY; Barry ST; Goodwin RJA; Barrett T; Gallagher FA
    Nat Commun; 2024 Jul; 15(1):5980. PubMed ID: 39013948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The metabolic interactions between tumor cells and tumor-associated stroma (TAS) in prostatic cancer.
    Giatromanolaki A; Koukourakis MI; Koutsopoulos A; Mendrinos S; Sivridis E
    Cancer Biol Ther; 2012 Nov; 13(13):1284-9. PubMed ID: 22895074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperpolarized MRI of Human Prostate Cancer Reveals Increased Lactate with Tumor Grade Driven by Monocarboxylate Transporter 1.
    Granlund KL; Tee SS; Vargas HA; Lyashchenko SK; Reznik E; Fine S; Laudone V; Eastham JA; Touijer KA; Reuter VE; Gonen M; Sosa RE; Nicholson D; Guo YW; Chen AP; Tropp J; Robb F; Hricak H; Keshari KR
    Cell Metab; 2020 Jan; 31(1):105-114.e3. PubMed ID: 31564440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using the "reverse Warburg effect" to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers.
    Witkiewicz AK; Whitaker-Menezes D; Dasgupta A; Philp NJ; Lin Z; Gandara R; Sneddon S; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Cell Cycle; 2012 Mar; 11(6):1108-17. PubMed ID: 22313602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancer metabolism, stemness and tumor recurrence: MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer.
    Curry JM; Tuluc M; Whitaker-Menezes D; Ames JA; Anantharaman A; Butera A; Leiby B; Cognetti DM; Sotgia F; Lisanti MP; Martinez-Outschoorn UE
    Cell Cycle; 2013 May; 12(9):1371-84. PubMed ID: 23574725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear factor E2-related factor-2 has a differential impact on MCT1 and MCT4 lactate carrier expression in colonic epithelial cells: a condition favoring metabolic symbiosis between colorectal cancer and stromal cells.
    Diehl K; Dinges LA; Helm O; Ammar N; Plundrich D; Arlt A; Röcken C; Sebens S; Schäfer H
    Oncogene; 2018 Jan; 37(1):39-51. PubMed ID: 28846107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organized metabolic crime in prostate cancer: The coexpression of MCT1 in tumor and MCT4 in stroma is an independent prognosticator for biochemical failure.
    Andersen S; Solstad Ø; Moi L; Donnem T; Eilertsen M; Nordby Y; Ness N; Richardsen E; Busund LT; Bremnes RM
    Urol Oncol; 2015 Aug; 33(8):338.e9-17. PubMed ID: 26066969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excess exogenous pyruvate inhibits lactate dehydrogenase activity in live cells in an MCT1-dependent manner.
    Rao Y; Gammon ST; Sutton MN; Zacharias NM; Bhattacharya P; Piwnica-Worms D
    J Biol Chem; 2021 Jul; 297(1):100775. PubMed ID: 34022218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay.
    Fiaschi T; Marini A; Giannoni E; Taddei ML; Gandellini P; De Donatis A; Lanciotti M; Serni S; Cirri P; Chiarugi P
    Cancer Res; 2012 Oct; 72(19):5130-40. PubMed ID: 22850421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperpolarized
    Chen HY; Aggarwal R; Bok RA; Ohliger MA; Zhu Z; Lee P; Gordon JW; van Criekinge M; Carvajal L; Slater JB; Larson PEZ; Small EJ; Kurhanewicz J; Vigneron DB
    Prostate Cancer Prostatic Dis; 2020 Jun; 23(2):269-276. PubMed ID: 31685983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial and glycolytic metabolic compartmentalization in diffuse large B-cell lymphoma.
    Gooptu M; Whitaker-Menezes D; Sprandio J; Domingo-Vidal M; Lin Z; Uppal G; Gong J; Fratamico R; Leiby B; Dulau-Florea A; Caro J; Martinez-Outschoorn U
    Semin Oncol; 2017 Jun; 44(3):204-217. PubMed ID: 29248132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a stromal-epithelial "lactate shuttle" in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts.
    Whitaker-Menezes D; Martinez-Outschoorn UE; Lin Z; Ertel A; Flomenberg N; Witkiewicz AK; Birbe RC; Howell A; Pavlides S; Gandara R; Pestell RG; Sotgia F; Philp NJ; Lisanti MP
    Cell Cycle; 2011 Jun; 10(11):1772-83. PubMed ID: 21558814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MCT1 Modulates Cancer Cell Pyruvate Export and Growth of Tumors that Co-express MCT1 and MCT4.
    Hong CS; Graham NA; Gu W; Espindola Camacho C; Mah V; Maresh EL; Alavi M; Bagryanova L; Krotee PAL; Gardner BK; Behbahan IS; Horvath S; Chia D; Mellinghoff IK; Hurvitz SA; Dubinett SM; Critchlow SE; Kurdistani SK; Goodglick L; Braas D; Graeber TG; Christofk HR
    Cell Rep; 2016 Feb; 14(7):1590-1601. PubMed ID: 26876179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.