BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35075898)

  • 1. Photophysical Engineering of Fluorescent Proteins: Accomplishments and Challenges of Physical Chemistry Strategies.
    Mukherjee S; Jimenez R
    J Phys Chem B; 2022 Feb; 126(4):735-750. PubMed ID: 35075898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blue-Shifted Green Fluorescent Protein Homologues Are Brighter than Enhanced Green Fluorescent Protein under Two-Photon Excitation.
    Molina RS; Tran TM; Campbell RE; Lambert GG; Salih A; Shaner NC; Hughes TE; Drobizhev M
    J Phys Chem Lett; 2017 Jun; 8(12):2548-2554. PubMed ID: 28530831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative photophysical properties of some widely used fluorescent proteins under two-photon excitation conditions.
    Adhikari DP; Biener G; Stoneman MR; Badu DN; Paprocki JD; Eis A; Park PS; Popa I; Raicu V
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 262():120133. PubMed ID: 34243141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting.
    Bajar BT; Wang ES; Lam AJ; Kim BB; Jacobs CL; Howe ES; Davidson MW; Lin MZ; Chu J
    Sci Rep; 2016 Feb; 6():20889. PubMed ID: 26879144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in fluorescent protein technology.
    Shaner NC; Patterson GH; Davidson MW
    J Cell Sci; 2007 Dec; 120(Pt 24):4247-60. PubMed ID: 18057027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel uses of fluorescent proteins.
    Mishin AS; Belousov VV; Solntsev KM; Lukyanov KA
    Curr Opin Chem Biol; 2015 Aug; 27():1-9. PubMed ID: 26022943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetically encodable fluorescent protein markers in advanced optical imaging.
    Nienhaus K; Nienhaus GU
    Methods Appl Fluoresc; 2022 Jul; 10(4):. PubMed ID: 35767981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cysteine Sulfoxidation Increases the Photostability of Red Fluorescent Proteins.
    Ren H; Yang B; Ma C; Hu YS; Wang PG; Wang L
    ACS Chem Biol; 2016 Oct; 11(10):2679-2684. PubMed ID: 27603966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the photostability of bright monomeric orange and red fluorescent proteins.
    Shaner NC; Lin MZ; McKeown MR; Steinbach PA; Hazelwood KL; Davidson MW; Tsien RY
    Nat Methods; 2008 Jun; 5(6):545-51. PubMed ID: 18454154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Fluorescent Proteins with Intramolecular Photostabilization*.
    Henrikus SS; Tassis K; Zhang L; van der Velde JHM; Gebhardt C; Herrmann A; Jung G; Cordes T
    Chembiochem; 2021 Dec; 22(23):3283-3291. PubMed ID: 34296494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering Structural Photophysics of Fluorescent Proteins by Kinetic Crystallography.
    Bourgeois D
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28574447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering and characterizing monomeric fluorescent proteins for live-cell imaging applications.
    Ai HW; Baird MA; Shen Y; Davidson MW; Campbell RE
    Nat Protoc; 2014 Apr; 9(4):910-28. PubMed ID: 24651502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical cross-linking of a variety of green fluorescent proteins as Förster resonance energy transfer donors for Yukon orange fluorescent protein: A project-based undergraduate laboratory experience.
    Marchioretto MK; Horton JT; Berstler CA; Humphries JB; Koloditch IJ; Voss SD; de La Harpe K; Hicks BW; Jefferies LR
    Biochem Mol Biol Educ; 2018 Sep; 46(5):516-522. PubMed ID: 30281890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure, dynamics and optical properties of fluorescent proteins: perspectives for marker development.
    Nienhaus GU; Wiedenmann J
    Chemphyschem; 2009 Jul; 10(9-10):1369-79. PubMed ID: 19229892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum dot-fluorescent protein FRET probes for sensing intracellular pH.
    Dennis AM; Rhee WJ; Sotto D; Dublin SN; Bao G
    ACS Nano; 2012 Apr; 6(4):2917-24. PubMed ID: 22443420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging fluorescent protein technologies.
    Enterina JR; Wu L; Campbell RE
    Curr Opin Chem Biol; 2015 Aug; 27():10-7. PubMed ID: 26043278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-guided rational design of red fluorescent proteins: towards designer genetically-encoded fluorophores.
    Eason MG; Damry AM; Chica RA
    Curr Opin Struct Biol; 2017 Aug; 45():91-99. PubMed ID: 28038355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of the 145 Residue in Photochemical Properties of the Biphotochromic Protein mSAASoti: Brightness versus Photoconversion.
    Gavshina AV; Solovyev ID; Savitsky AP
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of fluorescent proteins.
    Bindels DS; Goedhart J; Hink MA; van Weeren L; Joosen L; Gadella TW
    Methods Mol Biol; 2014; 1076():371-417. PubMed ID: 24108635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Twelve Colors of Streptavidin-Fluorescent Proteins (SA-FPs): A Versatile Tool to Visualize Genetic Information in Single-Molecule DNA.
    Jin Y; Bae J; Kim TY; Hwang H; Kim T; Yu M; Oh H; Hashiya K; Bando T; Sugiyama H; Jo K
    Anal Chem; 2022 Dec; 94(48):16927-16935. PubMed ID: 36377840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.