These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Enhanced thermal energy harvesting performance of a cobalt redox couple in ionic liquid-solvent mixtures. Lazar MA; Al-Masri D; MacFarlane DR; Pringle JM Phys Chem Chem Phys; 2016 Jan; 18(3):1404-10. PubMed ID: 26348719 [TBL] [Abstract][Full Text] [Related]
4. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Duan J; Feng G; Yu B; Li J; Chen M; Yang P; Feng J; Liu K; Zhou J Nat Commun; 2018 Dec; 9(1):5146. PubMed ID: 30514952 [TBL] [Abstract][Full Text] [Related]
5. Insight into the effect of the configuration entropy of additives on the Seebeck coefficient. Nandal V; Wei Q; Seki K Phys Chem Chem Phys; 2021 Jul; 23(27):14803-14810. PubMed ID: 34212162 [TBL] [Abstract][Full Text] [Related]
7. Quasi-solid-State Electrolytes for Low-Grade Thermal Energy Harvesting using a Cobalt Redox Couple. Taheri A; MacFarlane DR; Pozo-Gonzalo C; Pringle JM ChemSusChem; 2018 Aug; 11(16):2788-2796. PubMed ID: 29873193 [TBL] [Abstract][Full Text] [Related]
8. Temperature dependence of the electrode potential of a cobalt-based redox couple in ionic liquid electrolytes for thermal energy harvesting. He J; Al-Masri D; MacFarlane DR; Pringle JM Faraday Discuss; 2016 Aug; 190():205-18. PubMed ID: 27200437 [TBL] [Abstract][Full Text] [Related]
10. A Low Driving-Voltage Hybrid-Electrolyte Electrochromic Window with Only Ferreous Redox Couples. Song J; Huang B; Xu Y; Yang K; Li Y; Mu Y; Du L; Yun S; Kang L Nanomaterials (Basel); 2023 Jan; 13(1):. PubMed ID: 36616123 [TBL] [Abstract][Full Text] [Related]
11. Semiconductor Quantum Dot Sensitized Solar Cells Based on Ferricyanide/Ferrocyanide Redox Electrolyte Reaching an Open Circuit Photovoltage of 0.8 V. Evangelista RM; Makuta S; Yonezu S; Andrews J; Tachibana Y ACS Appl Mater Interfaces; 2016 Jun; 8(22):13957-65. PubMed ID: 27171789 [TBL] [Abstract][Full Text] [Related]
12. A Novel Gel Thermoelectric Chemical Cell for Harvesting Low-Grade Heat Energy. Yue Q; Gao T; Wang Y; Meng Y; Li X; Yuan H; Xiao D ChemSusChem; 2023 Jan; 16(2):e202201815. PubMed ID: 36397292 [TBL] [Abstract][Full Text] [Related]
13. Coupling Ferricyanide/Ferrocyanide Redox Mediated Recycling Spent LiFePO Jia X; Kang H; Hou G; Wu W; Lu S; Li Y; Wang Q; Qin W; Wu X Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202318248. PubMed ID: 38226789 [TBL] [Abstract][Full Text] [Related]
14. Revisiting a classical redox process on a gold electrode by operando ToF-SIMS: where does the gold go? Hua X; Xia HL; Long YT Chem Sci; 2019 Jun; 10(24):6215-6219. PubMed ID: 31360429 [TBL] [Abstract][Full Text] [Related]
15. Robust, Efficient, and Recoverable Thermocells with Zwitterion-Boosted Hydrogel Electrolytes for Energy-Autonomous and Wearable Sensing. Lu X; Mo Z; Liu Z; Hu Y; Du C; Liang L; Liu Z; Chen G Angew Chem Int Ed Engl; 2024 Jul; 63(29):e202405357. PubMed ID: 38682802 [TBL] [Abstract][Full Text] [Related]
16. Modification in supercapacitive behavior of CoO-rGO composite thin film from exposure to ferri/ferrocyanide redox active couple. Shelke AR; Lokhande AC; Pujari RB; Lokhande CD J Colloid Interface Sci; 2018 Jul; 522():111-119. PubMed ID: 29579562 [TBL] [Abstract][Full Text] [Related]
17. Strong interaction between imidazolium-based polycationic polymer and ferricyanide: toward redox potential regulation for selective in vivo electrochemical measurements. Zhuang X; Wang D; Lin Y; Yang L; Yu P; Jiang W; Mao L Anal Chem; 2012 Feb; 84(4):1900-6. PubMed ID: 22263742 [TBL] [Abstract][Full Text] [Related]
18. A flexible quasi-solid-state thermoelectrochemical cell with high stretchability as an energy-autonomous strain sensor. Liang L; Lv H; Shi XL; Liu Z; Chen G; Chen ZG; Sun G Mater Horiz; 2021 Oct; 8(10):2750-2760. PubMed ID: 34617552 [TBL] [Abstract][Full Text] [Related]
19. Lithium Ferrocyanide Catholyte for High-Energy and Low-cost Aqueous Redox Flow Batteries. Li X; Yao Y; Liu C; Jia X; Jian J; Guo B; Lu S; Qin W; Wang Q; Wu X Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202304667. PubMed ID: 37081714 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the kinetic and mass transport limitations in thermoelectrochemical cells with different electrode materials. Abraham TJ; Tachikawa N; MacFarlane DR; Pringle JM Phys Chem Chem Phys; 2014 Feb; 16(6):2527-32. PubMed ID: 24362972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]