BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 35075948)

  • 1. Improved transfer efficiency of supercharged 36 + GFP protein mediate nucleic acid delivery.
    Wang L; Geng J; Chen L; Guo X; Wang T; Fang Y; Belingon B; Wu J; Li M; Zhan Y; Shang W; Wan Y; Feng X; Li X; Wang H
    Drug Deliv; 2022 Dec; 29(1):386-398. PubMed ID: 35075948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular Delivery of DNA and Protein by a Novel Cell-Permeable Peptide Derived from DOT1L.
    Geng J; Guo X; Wang L; Nguyen RQ; Wang F; Liu C; Wang H
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32024261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular delivery of nucleic acid by cell-permeable hPP10 peptide.
    Ding Y; Zhao X; Geng J; Guo X; Ma J; Wang H; Liu C
    J Cell Physiol; 2019 Jul; 234(7):11670-11678. PubMed ID: 30515802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supercharged green fluorescent protein delivers HPV16E7 DNA and protein into mammalian cells in vitro and in vivo.
    Motevalli F; Bolhassani A; Hesami S; Shahbazi S
    Immunol Lett; 2018 Feb; 194():29-39. PubMed ID: 29273425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GFP-complementation assay to detect functional CPP and protein delivery into living cells.
    Milech N; Longville BA; Cunningham PT; Scobie MN; Bogdawa HM; Winslow S; Anastasas M; Connor T; Ong F; Stone SR; Kerfoot M; Heinrich T; Kroeger KM; Tan YF; Hoffmann K; Thomas WR; Watt PM; Hopkins RM
    Sci Rep; 2015 Dec; 5():18329. PubMed ID: 26671759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent attachment of cyclic TAT peptides to GFP results in protein delivery into live cells with immediate bioavailability.
    Nischan N; Herce HD; Natale F; Bohlke N; Budisa N; Cardoso MC; Hackenberger CP
    Angew Chem Int Ed Engl; 2015 Feb; 54(6):1950-3. PubMed ID: 25521313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delivery of nucleic acids, proteins, and nanoparticles by arginine-rich cell-penetrating peptides in rotifers.
    Liu BR; Liou JS; Chen YJ; Huang YW; Lee HJ
    Mar Biotechnol (NY); 2013 Oct; 15(5):584-95. PubMed ID: 23715807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins.
    McNaughton BR; Cronican JJ; Thompson DB; Liu DR
    Proc Natl Acad Sci U S A; 2009 Apr; 106(15):6111-6. PubMed ID: 19307578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptides for nucleic acid delivery.
    Lehto T; Ezzat K; Wood MJA; El Andaloussi S
    Adv Drug Deliv Rev; 2016 Nov; 106(Pt A):172-182. PubMed ID: 27349594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of cationic and amphipathic cell penetrating peptides for siRNA delivery and efficacy.
    Mo RH; Zaro JL; Shen WC
    Mol Pharm; 2012 Feb; 9(2):299-309. PubMed ID: 22171592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and screening of brain-targeted lipid-based nanoparticles with enhanced cell penetration and gene delivery properties.
    Dos Santos Rodrigues B; Lakkadwala S; Kanekiyo T; Singh J
    Int J Nanomedicine; 2019; 14():6497-6517. PubMed ID: 31616141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophobic and electrostatic interactions between cell penetrating peptides and plasmid DNA are important for stable non-covalent complexation and intracellular delivery.
    Upadhya A; Sangave PC
    J Pept Sci; 2016 Oct; 22(10):647-659. PubMed ID: 27723187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent in vivo advances in cell-penetrating peptide-assisted drug delivery.
    Kurrikoff K; Gestin M; Langel Ü
    Expert Opin Drug Deliv; 2016; 13(3):373-87. PubMed ID: 26634750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of TAT cell membrane penetration efficiency by dimethyl sulphoxide.
    Wang H; Zhong CY; Wu JF; Huang YB; Liu CB
    J Control Release; 2010 Apr; 143(1):64-70. PubMed ID: 20025914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A survey on "Trojan Horse" peptides: opportunities, issues and controlled entry to "Troy".
    Shi NQ; Qi XR; Xiang B; Zhang Y
    J Control Release; 2014 Nov; 194():53-70. PubMed ID: 25151981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low cost delivery of proteins bioencapsulated in plant cells to human non-immune or immune modulatory cells.
    Xiao Y; Kwon KC; Hoffman BE; Kamesh A; Jones NT; Herzog RW; Daniell H
    Biomaterials; 2016 Feb; 80():68-79. PubMed ID: 26706477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-penetrating peptides for the delivery of nucleic acids.
    Lehto T; Kurrikoff K; Langel Ü
    Expert Opin Drug Deliv; 2012 Jul; 9(7):823-36. PubMed ID: 22594635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell Penetrating Peptide Conjugated Chitosan for Enhanced Delivery of Nucleic Acid.
    Layek B; Lipp L; Singh J
    Int J Mol Sci; 2015 Dec; 16(12):28912-30. PubMed ID: 26690119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-penetrating peptides (CPPs): From delivery of nucleic acids and antigens to transduction of engineered nucleases for application in transgenesis.
    Rádis-Baptista G; Campelo IS; Morlighem JRL; Melo LM; Freitas VJF
    J Biotechnol; 2017 Jun; 252():15-26. PubMed ID: 28479163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of gene transfer efficiency in the Bcap-37 cell line by dimethyl sulphoxide and menthol.
    Lin J; Zhu LQ; Qin T; Yu QH; Yang Q
    Mol Med Rep; 2012 Dec; 6(6):1293-300. PubMed ID: 22992809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.