These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35076051)

  • 1. Direct synthesis of 1,3-dithiolanes from terminal alkynes
    Khade VV; Thube AS; Dharpure PD; Bhat RG
    Org Biomol Chem; 2022 Feb; 20(6):1315-1319. PubMed ID: 35076051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Base Dependent Rearrangement of Dithiane and Dithiolane under Visible-light Photoredox catalysis.
    Dharpure PD; Behera M; Thube AS; Bhat RG
    Chem Asian J; 2023 Feb; 18(4):e202201128. PubMed ID: 36630181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Merging Visible Light Photoredox Catalysis with Metal Catalyzed C-H Activations: On the Role of Oxygen and Superoxide Ions as Oxidants.
    Fabry DC; Rueping M
    Acc Chem Res; 2016 Sep; 49(9):1969-79. PubMed ID: 27556812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visible-Light-Promoted [2 + 2 + 2] Cyclization of Alkynes with Nitriles to Pyridines Using Pyrylium Salts as Photoredox Catalysts.
    Wang K; Meng LG; Wang L
    Org Lett; 2017 Apr; 19(8):1958-1961. PubMed ID: 28368617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative Deprotection of p-Methoxybenzyl Ethers via Metal-Free Photoredox Catalysis.
    Ahn DK; Kang YW; Woo SK
    J Org Chem; 2019 Mar; 84(6):3612-3623. PubMed ID: 30781954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Markovnikov-Selective Radical Addition of S-Nucleophiles to Terminal Alkynes through a Photoredox Process.
    Wang H; Lu Q; Chiang CW; Luo Y; Zhou J; Wang G; Lei A
    Angew Chem Int Ed Engl; 2017 Jan; 56(2):595-599. PubMed ID: 27925394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible Light Copper Photoredox-Catalyzed Aerobic Oxidative Coupling of Phenols and Terminal Alkynes: Regioselective Synthesis of Functionalized Ketones via C≡C Triple Bond Cleavage.
    Sagadevan A; Charpe VP; Ragupathi A; Hwang KC
    J Am Chem Soc; 2017 Mar; 139(8):2896-2899. PubMed ID: 28177239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visible-Light-Mediated Synthesis of α-Ketoamides via Oxidative Amination of 2-Bromoacetophenones Using Eosin Y as a Photoredox Catalyst.
    Kishor K; Prabhakar NS; Singh KN
    Chem Asian J; 2023 Oct; 18(19):e202300669. PubMed ID: 37642246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regioselective Hydroalkylation and Arylalkylation of Alkynes by Photoredox/Nickel Dual Catalysis: Application and Mechanism.
    Yue H; Zhu C; Kancherla R; Liu F; Rueping M
    Angew Chem Int Ed Engl; 2020 Mar; 59(14):5738-5746. PubMed ID: 31901214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer.
    Staveness D; Bosque I; Stephenson CR
    Acc Chem Res; 2016 Oct; 49(10):2295-2306. PubMed ID: 27529484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-free visible-light-mediated organophotoredox catalysis: synthesis of 3-functionalized indole via C-C, C-N bond formation.
    Yadav N; Ansari MD; Yadav VB; Verma A; Tiwari SK; Ansari S; Siddiqui IR
    Mol Divers; 2021 May; 25(2):1103-1109. PubMed ID: 32016772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aromatic Chlorosulfonylation by Photoredox Catalysis.
    Májek M; Neumeier M; Jacobi von Wangelin A
    ChemSusChem; 2017 Jan; 10(1):151-155. PubMed ID: 27863070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decarboxylative alkynylation and carbonylative alkynylation of carboxylic acids enabled by visible-light photoredox catalysis.
    Zhou QQ; Guo W; Ding W; Wu X; Chen X; Lu LQ; Xiao WJ
    Angew Chem Int Ed Engl; 2015 Sep; 54(38):11196-9. PubMed ID: 26149104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled Fluoroalkylation Reactions by Visible-Light Photoredox Catalysis.
    Chatterjee T; Iqbal N; You Y; Cho EJ
    Acc Chem Res; 2016 Oct; 49(10):2284-2294. PubMed ID: 27626105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp
    Kariofillis SK; Doyle AG
    Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eosin Y photoredox catalyzed net redox neutral reaction for regiospecific annulation to 3-sulfonylindoles via anion oxidation of sodium sulfinate salts.
    Rohokale RS; Tambe SD; Kshirsagar UA
    Org Biomol Chem; 2018 Jan; 16(4):536-540. PubMed ID: 29308489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic Perspectives on Organic Photoredox Catalysis for Aromatic Substitutions.
    Majek M; Jacobi von Wangelin A
    Acc Chem Res; 2016 Oct; 49(10):2316-2327. PubMed ID: 27669097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visible Light Mediated Photoredox Catalytic Arylation Reactions.
    Ghosh I; Marzo L; Das A; Shaikh R; König B
    Acc Chem Res; 2016 Aug; 49(8):1566-77. PubMed ID: 27482835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visible-Light Photoredox-Catalyzed Difunctionalization of Alkynes with Quinoxalin-2(1
    Song L; Ma C; Huang J; Lv Y; Yue H; You J; Wei W; Yi D
    J Org Chem; 2024 Aug; 89(15):10974-10986. PubMed ID: 39048291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-free photoredox-catalyzed direct α-oxygenation of
    Neerathilingam N; Anandhan R
    RSC Adv; 2022 Mar; 12(14):8368-8373. PubMed ID: 35424823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.