These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 35076280)
1. Strategies for Enhancing the Homology-Directed Repair Efficiency of CRISPR-Cas Systems. Sun W; Liu H; Yin W; Qiao J; Zhao X; Liu Y CRISPR J; 2022 Feb; 5(1):7-18. PubMed ID: 35076280 [TBL] [Abstract][Full Text] [Related]
2. Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks. Yang H; Ren S; Yu S; Pan H; Li T; Ge S; Zhang J; Xia N Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899704 [TBL] [Abstract][Full Text] [Related]
3. Opportunities and challenges with CRISPR-Cas mediated homologous recombination based precise editing in plants and animals. Singh S; Chaudhary R; Deshmukh R; Tiwari S Plant Mol Biol; 2023 Jan; 111(1-2):1-20. PubMed ID: 36315306 [TBL] [Abstract][Full Text] [Related]
5. A high-efficiency and versatile CRISPR/Cas9-mediated HDR-based biallelic editing system. Li X; Sun B; Qian H; Ma J; Paolino M; Zhang Z J Zhejiang Univ Sci B; 2022 Feb; 23(2):141-152. PubMed ID: 35187887 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of homology-directed repair with chromatin donor templates in cells. Cruz-Becerra G; Kadonaga JT Elife; 2020 Apr; 9():. PubMed ID: 32343230 [TBL] [Abstract][Full Text] [Related]
7. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes. Wang B; Li K; Wang A; Reiser M; Saunders T; Lockey RF; Wang JW Biotechniques; 2015 Oct; 59(4):201-2, 204, 206-8. PubMed ID: 26458548 [TBL] [Abstract][Full Text] [Related]
8. A novel Cas9 fusion protein promotes targeted genome editing with reduced mutational burden in primary human cells. Carusillo A; Haider S; Schäfer R; Rhiel M; Türk D; Chmielewski KO; Klermund J; Mosti L; Andrieux G; Schäfer R; Cornu TI; Cathomen T; Mussolino C Nucleic Acids Res; 2023 May; 51(9):4660-4673. PubMed ID: 37070192 [TBL] [Abstract][Full Text] [Related]
9. Ligation-assisted homologous recombination enables precise genome editing by deploying both MMEJ and HDR. Zhao Z; Shang P; Sage F; Geijsen N Nucleic Acids Res; 2022 Jun; 50(11):e62. PubMed ID: 35212386 [TBL] [Abstract][Full Text] [Related]
10. Control of gene editing by manipulation of DNA repair mechanisms. Danner E; Bashir S; Yumlu S; Wurst W; Wefers B; Kühn R Mamm Genome; 2017 Aug; 28(7-8):262-274. PubMed ID: 28374058 [TBL] [Abstract][Full Text] [Related]
11. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. He X; Tan C; Wang F; Wang Y; Zhou R; Cui D; You W; Zhao H; Ren J; Feng B Nucleic Acids Res; 2016 May; 44(9):e85. PubMed ID: 26850641 [TBL] [Abstract][Full Text] [Related]
13. Small-molecule enhancers of CRISPR-induced homology-directed repair in gene therapy: A medicinal chemist's perspective. Lee ABC; Tan MH; Chai CLL Drug Discov Today; 2022 Sep; 27(9):2510-2525. PubMed ID: 35738528 [TBL] [Abstract][Full Text] [Related]
14. [Recent developments in enhancing the efficiency of CRISPR/Cas9- mediated knock-in in animals]. Li GL; Yang SX; Wu ZF; Zhang XW Yi Chuan; 2020 Jul; 42(7):641-656. PubMed ID: 32694104 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency. Canny MD; Moatti N; Wan LCK; Fradet-Turcotte A; Krasner D; Mateos-Gomez PA; Zimmermann M; Orthwein A; Juang YC; Zhang W; Noordermeer SM; Seclen E; Wilson MD; Vorobyov A; Munro M; Ernst A; Ng TF; Cho T; Cannon PM; Sidhu SS; Sicheri F; Durocher D Nat Biotechnol; 2018 Jan; 36(1):95-102. PubMed ID: 29176614 [TBL] [Abstract][Full Text] [Related]
16. Increasing CRISPR/Cas9-mediated homology-directed DNA repair by histone deacetylase inhibitors. Li G; Zhang X; Wang H; Liu D; Li Z; Wu Z; Yang H Int J Biochem Cell Biol; 2020 Aug; 125():105790. PubMed ID: 32534122 [TBL] [Abstract][Full Text] [Related]
17. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Richardson CD; Ray GJ; DeWitt MA; Curie GL; Corn JE Nat Biotechnol; 2016 Mar; 34(3):339-44. PubMed ID: 26789497 [TBL] [Abstract][Full Text] [Related]
18. Genome editing in human hematopoietic stem and progenitor cells via CRISPR-Cas9-mediated homology-independent targeted integration. Bloomer H; Smith RH; Hakami W; Larochelle A Mol Ther; 2021 Apr; 29(4):1611-1624. PubMed ID: 33309880 [TBL] [Abstract][Full Text] [Related]
19. Enhancement of CRISPR-Cas9 induced precise gene editing by targeting histone H2A-K15 ubiquitination. Bashir S; Dang T; Rossius J; Wolf J; Kühn R BMC Biotechnol; 2020 Oct; 20(1):57. PubMed ID: 33097066 [TBL] [Abstract][Full Text] [Related]
20. Post-translational Regulation of Cas9 during G1 Enhances Homology-Directed Repair. Gutschner T; Haemmerle M; Genovese G; Draetta GF; Chin L Cell Rep; 2016 Feb; 14(6):1555-1566. PubMed ID: 26854237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]