BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 35076395)

  • 1. A genetic compensatory mechanism regulated by
    Velasco-Aviles S; Patel N; Casillas-Bajo A; Frutos-Rincón L; Velasco E; Gallar J; Arthur-Farraj P; Gomez-Sanchez JA; Cabedo H
    Elife; 2022 Jan; 11():. PubMed ID: 35076395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Class IIa histone deacetylases link cAMP signaling to the myelin transcriptional program of Schwann cells.
    Gomis-Coloma C; Velasco-Aviles S; Gomez-Sanchez JA; Casillas-Bajo A; Backs J; Cabedo H
    J Cell Biol; 2018 Apr; 217(4):1249-1268. PubMed ID: 29472387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging Role of HDACs in Regeneration and Ageing in the Peripheral Nervous System: Repair Schwann Cells as Pivotal Targets.
    Gomez-Sanchez JA; Patel N; Martirena F; Fazal SV; Mutschler C; Cabedo H
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Converse role of class I and class IIa HDACs in the progression of atrial fibrillation.
    Zhang D; Hu X; Li J; Hoogstra-Berends F; Zhuang Q; Esteban MA; de Groot N; Henning RH; Brundel BJJM
    J Mol Cell Cardiol; 2018 Dec; 125():39-49. PubMed ID: 30321539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding of Class IIa HDAC Derived Peptides into α-helices Upon Binding to Myocyte Enhancer Factor-2 in Complex with DNA.
    Chinellato M; Perin S; Carli A; Lastella L; Biondi B; Borsato G; Di Giorgio E; Brancolini C; Cendron L; Angelini A
    J Mol Biol; 2024 May; 436(9):168541. PubMed ID: 38492719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different class IIa HDACs repressive complexes regulate specific epigenetic responses related to cell survival in leiomyosarcoma cells.
    Di Giorgio E; Dalla E; Franforte E; Paluvai H; Minisini M; Trevisanut M; Picco R; Brancolini C
    Nucleic Acids Res; 2020 Jan; 48(2):646-664. PubMed ID: 31754707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium phenylbutyrate inhibits Schwann cell inflammation via HDAC and NFκB to promote axonal regeneration and remyelination.
    Yadav A; Huang TC; Chen SH; Ramasamy TS; Hsueh YY; Lin SP; Lu FI; Liu YH; Wu CC
    J Neuroinflammation; 2021 Oct; 18(1):238. PubMed ID: 34656124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The black sheep of class IIa: HDAC7 SIKens the heart.
    Travers JG; Hu T; McKinsey TA
    J Clin Invest; 2020 Jun; 130(6):2811-2813. PubMed ID: 32364532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. After Nerve Injury, Lineage Tracing Shows That Myelin and Remak Schwann Cells Elongate Extensively and Branch to Form Repair Schwann Cells, Which Shorten Radically on Remyelination.
    Gomez-Sanchez JA; Pilch KS; van der Lans M; Fazal SV; Benito C; Wagstaff LJ; Mirsky R; Jessen KR
    J Neurosci; 2017 Sep; 37(37):9086-9099. PubMed ID: 28904214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Class I and IIa histone deacetylases have opposite effects on sclerostin gene regulation.
    Baertschi S; Baur N; Lueders-Lefevre V; Voshol J; Keller H
    J Biol Chem; 2014 Sep; 289(36):24995-5009. PubMed ID: 25012661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural Progenitor-Like Cells Induced from Human Gingiva-Derived Mesenchymal Stem Cells Regulate Myelination of Schwann Cells in Rat Sciatic Nerve Regeneration.
    Zhang Q; Nguyen P; Xu Q; Park W; Lee S; Furuhashi A; Le AD
    Stem Cells Transl Med; 2017 Feb; 6(2):458-470. PubMed ID: 28191764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic AMP represses pathological MEF2 activation by myocyte-specific hypo-phosphorylation of HDAC5.
    He T; Huang J; Chen L; Han G; Stanmore D; Krebs-Haupenthal J; Avkiran M; Hagenmüller M; Backs J
    J Mol Cell Cardiol; 2020 Aug; 145():88-98. PubMed ID: 32485181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustained MAPK/ERK Activation in Adult Schwann Cells Impairs Nerve Repair.
    Cervellini I; Galino J; Zhu N; Allen S; Birchmeier C; Bennett DL
    J Neurosci; 2018 Jan; 38(3):679-690. PubMed ID: 29217688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and Functional Characterization of Histone Deacetylase 4 (HDAC4).
    Li L; Yang XJ
    Methods Mol Biol; 2016; 1436():31-45. PubMed ID: 27246207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of Calcineurin in Schwann Cells Does Not Affect Developmental Myelination, But Reduces Autophagy and Delays Myelin Clearance after Peripheral Nerve Injury.
    Reed CB; Frick LR; Weaver A; Sidoli M; Schlant E; Feltri ML; Wrabetz L
    J Neurosci; 2020 Aug; 40(32):6165-6176. PubMed ID: 32641402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific control of pancreatic endocrine β- and δ-cell mass by class IIa histone deacetylases HDAC4, HDAC5, and HDAC9.
    Lenoir O; Flosseau K; Ma FX; Blondeau B; Mai A; Bassel-Duby R; Ravassard P; Olson EN; Haumaitre C; Scharfmann R
    Diabetes; 2011 Nov; 60(11):2861-71. PubMed ID: 21953612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An approach to comprehensive genome and proteome expression analyses in Schwann cells and neurons during peripheral nerve myelin formation.
    Kangas SM; Ohlmeier S; Sormunen R; Jouhilahti EM; Peltonen S; Peltonen J; Heape AM
    J Neurochem; 2016 Sep; 138(6):830-44. PubMed ID: 27364987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. mTORC1 Is Transiently Reactivated in Injured Nerves to Promote c-Jun Elevation and Schwann Cell Dedifferentiation.
    Norrmén C; Figlia G; Pfistner P; Pereira JA; Bachofner S; Suter U
    J Neurosci; 2018 May; 38(20):4811-4828. PubMed ID: 29695414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenomic Regulation of Schwann Cell Reprogramming in Peripheral Nerve Injury.
    Ma KH; Hung HA; Svaren J
    J Neurosci; 2016 Aug; 36(35):9135-47. PubMed ID: 27581455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Up-regulation of HDAC4 is associated with Schwann cell proliferation after sciatic nerve crush.
    Liu Y; Liu Y; Nie X; Cao J; Zhu X; Zhang W; Liu Z; Mao X; Yan S; Ni Y; Wang Y
    Neurochem Res; 2014 Nov; 39(11):2105-17. PubMed ID: 25103231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.