BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 35076525)

  • 21. Microfluidic chips controlled with elastomeric microvalve arrays.
    Li N; Sip C; Folch A
    J Vis Exp; 2007; (8):296. PubMed ID: 18989408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rhein and polydimethylsiloxane functionalized carbon/carbon composites as prosthetic implants for bone repair applications.
    Jia Z; Yang C; Jiao J; Li X; Zhu D; Yang Y; Yang J; Che Y; Lu Y; Feng X
    Biomed Mater; 2017 Jul; 12(4):045004. PubMed ID: 28425918
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Less Is More: Oligomer Extraction and Hydrothermal Annealing Increase PDMS Adhesion Forces for Materials Studies and for Biology-Focused Microfluidic Applications.
    Millet LJ; Jain A; Gillette MU
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677275
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling and application of anisotropic hyperelasticity of PDMS polymers with surface patterns obtained by additive manufacturing technology.
    Lee HM; Sung J; Ko B; Lee H; Park S; So H; Yoon GH
    J Mech Behav Biomed Mater; 2021 Jun; 118():104412. PubMed ID: 33667928
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices.
    Shakeri A; Khan S; Didar TF
    Lab Chip; 2021 Aug; 21(16):3053-3075. PubMed ID: 34286800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogel-Assisted Double Molding Enables Rapid Replication of Stereolithographic 3D Prints for Engineered Tissue Design.
    Simmons DW; Schuftan DR; Ramahdita G; Huebsch N
    ACS Appl Mater Interfaces; 2023 May; 15(21):25313-25323. PubMed ID: 37200617
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facile Patterning of Thermoplastic Elastomers and Robust Bonding to Glass and Thermoplastics for Microfluidic Cell Culture and Organ-on-Chip.
    Schneider S; Brás EJS; Schneider O; Schlünder K; Loskill P
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34070209
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid replication of master structures by double casting with PDMS.
    Gitlin L; Schulze P; Belder D
    Lab Chip; 2009 Oct; 9(20):3000-2. PubMed ID: 19789756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Micro-macro hybrid soft-lithography master (MMHSM) fabrication for lab-on-a-chip applications.
    Park J; Li J; Han A
    Biomed Microdevices; 2010 Apr; 12(2):345-51. PubMed ID: 20049640
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Review of Methods to Modify the PDMS Surface Wettability and Their Applications.
    Neves LB; Afonso IS; Nobrega G; Barbosa LG; Lima RA; Ribeiro JE
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930640
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A simple method for production of hydrophilic, rigid, and sterilized multi-layer 3D integrated polydimethylsiloxane microfluidic chips.
    Oyama TG; Oyama K; Taguchi M
    Lab Chip; 2020 Jun; 20(13):2354-2363. PubMed ID: 32495806
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A stretchable conductive Polypyrrole Polydimethylsiloxane device fabricated by simple soft lithography and oxygen plasma treatment.
    Guo XC; Hu WW; Tan SH; Tsao CW
    Biomed Microdevices; 2018 Mar; 20(2):30. PubMed ID: 29564563
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modelling of silk-reinforced PDMS properties for soft tissue engineering applications.
    Kilikevičius A; Balčiūnas E; Kilikevičienė K; Maknickas A; Bukelskienė V; Baltriukienė D; Kačianauskas R
    Technol Health Care; 2018; 26(S2):679-688. PubMed ID: 29843291
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low Cost, Ease-of-Access Fabrication of Microfluidic Devices Using Wet Paper Molds.
    Thakur R; Fridman GY
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.
    Kim J; Surapaneni R; Gale BK
    Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface micromachining of polydimethylsiloxane for microfluidics applications.
    Hill S; Qian W; Chen W; Fu J
    Biomicrofluidics; 2016 Sep; 10(5):054114. PubMed ID: 27795746
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Additive Manufacturing Approach to Polydimethylsiloxane (PDMS) Microfluidic Devices: Review and Future Directions.
    Tony A; Badea I; Yang C; Liu Y; Wells G; Wang K; Yin R; Zhang H; Zhang W
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37112073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography.
    Wilson ME; Kota N; Kim Y; Wang Y; Stolz DB; LeDuc PR; Ozdoganlar OB
    Lab Chip; 2011 Apr; 11(8):1550-5. PubMed ID: 21399830
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tetrafluoroethylene-Propylene Elastomer for Fabrication of Microfluidic Organs-on-Chips Resistant to Drug Absorption.
    Sano E; Mori C; Matsuoka N; Ozaki Y; Yagi K; Wada A; Tashima K; Yamasaki S; Tanabe K; Yano K; Torisawa YS
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31752314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.