These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 35076763)
1. A Silicon Monoxide Lithium-Ion Battery Anode with Ultrahigh Areal Capacity. Zhong J; Wang T; Wang L; Peng L; Fu S; Zhang M; Cao J; Xu X; Liang J; Fei H; Duan X; Lu B; Wang Y; Zhu J; Duan X Nanomicro Lett; 2022 Jan; 14(1):50. PubMed ID: 35076763 [TBL] [Abstract][Full Text] [Related]
2. Ultra-high Areal Capacity Realized in Three-Dimensional Holey Graphene/SnO Liang J; Sun H; Zhao Z; Wang Y; Feng Z; Zhu J; Guo L; Huang Y; Duan X iScience; 2019 Sep; 19():728-736. PubMed ID: 31476619 [TBL] [Abstract][Full Text] [Related]
3. Ultrahigh-Capacity Lithium-Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes. Lin Y; Moitoso B; Martinez-Martinez C; Walsh ED; Lacey SD; Kim JW; Dai L; Hu L; Connell JW Nano Lett; 2017 May; 17(5):3252-3260. PubMed ID: 28362096 [TBL] [Abstract][Full Text] [Related]
4. In Situ Wrapping Si Nanoparticles with 2D Carbon Nanosheets as High-Areal-Capacity Anode for Lithium-Ion Batteries. Yan L; Liu J; Wang Q; Sun M; Jiang Z; Liang C; Pan F; Lin Z ACS Appl Mater Interfaces; 2017 Nov; 9(44):38159-38164. PubMed ID: 29053916 [TBL] [Abstract][Full Text] [Related]
5. Ultrahigh-Areal-Capacity Battery Anodes Enabled by Free-Standing Vanadium Nitride@N-Doped Carbon/Graphene Architecture. Li C; Zhu L; Qi S; Ge W; Ma W; Zhao Y; Huang R; Xu L; Qian Y ACS Appl Mater Interfaces; 2020 Nov; 12(44):49607-49616. PubMed ID: 33104326 [TBL] [Abstract][Full Text] [Related]
6. Double-Holey-Heterostructure Frameworks Enable Fast, Stable, and Simultaneous Ultrahigh Gravimetric, Areal, and Volumetric Lithium Storage. Chen Z; Chen J; Bu F; Agboola PO; Shakir I; Xu Y ACS Nano; 2018 Dec; 12(12):12879-12887. PubMed ID: 30525431 [TBL] [Abstract][Full Text] [Related]
7. Vertical Graphene Growth on SiO Microparticles for Stable Lithium Ion Battery Anodes. Shi L; Pang C; Chen S; Wang M; Wang K; Tan Z; Gao P; Ren J; Huang Y; Peng H; Liu Z Nano Lett; 2017 Jun; 17(6):3681-3687. PubMed ID: 28471678 [TBL] [Abstract][Full Text] [Related]
8. Folding Graphene Film Yields High Areal Energy Storage in Lithium-Ion Batteries. Wang B; Ryu J; Choi S; Song G; Hong D; Hwang C; Chen X; Wang B; Li W; Song HK; Park S; Ruoff RS ACS Nano; 2018 Feb; 12(2):1739-1746. PubMed ID: 29350526 [TBL] [Abstract][Full Text] [Related]
9. A Convenient and Versatile Method To Control the Electrode Microstructure toward High-Energy Lithium-Ion Batteries. Zhao H; Yang Q; Yuca N; Ling M; Higa K; Battaglia VS; Parkinson DY; Srinivasan V; Liu G Nano Lett; 2016 Jul; 16(7):4686-90. PubMed ID: 27336856 [TBL] [Abstract][Full Text] [Related]
11. Conductive Polymer Binder-Enabled SiO-SnxCoyCz Anode for High-Energy Lithium-Ion Batteries. Zhao H; Fu Y; Ling M; Jia Z; Song X; Chen Z; Lu J; Amine K; Liu G ACS Appl Mater Interfaces; 2016 Jun; 8(21):13373-7. PubMed ID: 27160017 [TBL] [Abstract][Full Text] [Related]
12. Nano/Microstructured Silicon-Graphite Composite Anode for High-Energy-Density Li-Ion Battery. Li P; Hwang JY; Sun YK ACS Nano; 2019 Feb; 13(2):2624-2633. PubMed ID: 30759341 [TBL] [Abstract][Full Text] [Related]
13. Functionally Gradient Silicon/Graphite Composite Electrodes Enabling Stable Cycling and High Capacity for Lithium-Ion Batteries. Zhang W; Gui S; Li W; Tu S; Li G; Zhang Y; Sun Y; Xie J; Zhou H; Yang H ACS Appl Mater Interfaces; 2022 Nov; 14(46):51954-51964. PubMed ID: 36350880 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensionally multiple protected silicon anode toward ultrahigh areal capacity and stability. Zhao J; Xie M; Yang K; Wei D; Zhang C; Wang Z; Yang X J Colloid Interface Sci; 2023 Sep; 646():538-546. PubMed ID: 37210901 [TBL] [Abstract][Full Text] [Related]
15. Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries. David L; Bhandavat R; Barrera U; Singh G Nat Commun; 2016 Mar; 7():10998. PubMed ID: 27025781 [TBL] [Abstract][Full Text] [Related]
16. Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries. Zheng T; Jia Z; Lin N; Langer T; Lux S; Lund I; Gentschev AC; Qiao J; Liu G Polymers (Basel); 2017 Nov; 9(12):. PubMed ID: 30965957 [TBL] [Abstract][Full Text] [Related]
17. A 3D Nitrogen-Doped Graphene/TiN Nanowires Composite as a Strong Polysulfide Anchor for Lithium-Sulfur Batteries with Enhanced Rate Performance and High Areal Capacity. Li Z; He Q; Xu X; Zhao Y; Liu X; Zhou C; Ai D; Xia L; Mai L Adv Mater; 2018 Nov; 30(45):e1804089. PubMed ID: 30259567 [TBL] [Abstract][Full Text] [Related]
18. High capacity and high density functional conductive polymer and SiO anode for high-energy lithium-ion batteries. Zhao H; Yuca N; Zheng Z; Fu Y; Battaglia VS; Abdelbast G; Zaghib K; Liu G ACS Appl Mater Interfaces; 2015 Jan; 7(1):862-6. PubMed ID: 25496355 [TBL] [Abstract][Full Text] [Related]
19. Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures. Li Y; Fu KK; Chen C; Luo W; Gao T; Xu S; Dai J; Pastel G; Wang Y; Liu B; Song J; Chen Y; Yang C; Hu L ACS Nano; 2017 May; 11(5):4801-4807. PubMed ID: 28485923 [TBL] [Abstract][Full Text] [Related]
20. Integrating Dually Encapsulated Si Architecture and Dense Structural Engineering for Ultrahigh Volumetric and Areal Capacity of Lithium Storage. Liu Z; Lu D; Wang W; Yue L; Zhu J; Zhao L; Zheng H; Wang J; Li Y ACS Nano; 2022 Mar; 16(3):4642-4653. PubMed ID: 35254052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]