BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35077156)

  • 1. Dual-Channel Electrochemical Measurements Reveal Rapid Adenosine is Localized in Brain Slices.
    Chang Y; Venton BJ
    ACS Chem Neurosci; 2022 Feb; 13(4):477-485. PubMed ID: 35077156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pannexin1 channels regulate mechanically stimulated but not spontaneous adenosine release.
    Lee ST; Chang Y; Venton BJ
    Anal Bioanal Chem; 2022 May; 414(13):3781-3789. PubMed ID: 35381855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplexing neurochemical detection with carbon fiber multielectrode arrays using fast-scan cyclic voltammetry.
    Rafi H; Zestos AG
    Anal Bioanal Chem; 2021 Nov; 413(27):6715-6726. PubMed ID: 34259877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical stimulation evokes rapid increases in extracellular adenosine concentration in the prefrontal cortex.
    Ross AE; Nguyen MD; Privman E; Venton BJ
    J Neurochem; 2014 Jul; 130(1):50-60. PubMed ID: 24606335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A
    Chang Y; Wang Y; Venton BJ
    ACS Chem Neurosci; 2020 Oct; 11(20):3377-3385. PubMed ID: 32976713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does the inability of CA1 area to respond to ischemia with early rapid adenosine release contribute to hippocampal vulnerability?: An Editorial Highlight for "Spontaneous, transient adenosine release is not enhanced in the CA1 region of hippocampus during severe ischemia models".
    Gulyaeva NV
    J Neurochem; 2021 Dec; 159(5):800-803. PubMed ID: 34480345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of spontaneous, transient adenosine release in the caudate-putamen and prefrontal cortex.
    Nguyen MD; Lee ST; Ross AE; Ryals M; Choudhry VI; Venton BJ
    PLoS One; 2014; 9(1):e87165. PubMed ID: 24494035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal resolution in electrochemical imaging on single PC12 cells using amperometry and voltammetry at microelectrode arrays.
    Zhang B; Heien ML; Santillo MF; Mellander L; Ewing AG
    Anal Chem; 2011 Jan; 83(2):571-7. PubMed ID: 21190375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wireless Instantaneous Neurotransmitter Concentration System-based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring.
    Agnesi F; Tye SJ; Bledsoe JM; Griessenauer CJ; Kimble CJ; Sieck GC; Bennet KE; Garris PA; Blaha CD; Lee KH
    J Neurosurg; 2009 Oct; 111(4):701-11. PubMed ID: 19425899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of spontaneous and mechanically-stimulated adenosine release in mice.
    Wang Y; Venton BJ
    Neurochem Int; 2019 Mar; 124():46-50. PubMed ID: 30579856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast scan cyclic voltammetry as a novel method for detection of real-time gonadotropin-releasing hormone release in mouse brain slices.
    Glanowska KM; Venton BJ; Moenter SM
    J Neurosci; 2012 Oct; 32(42):14664-9. PubMed ID: 23077052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release.
    Nguyen MD; Venton BJ
    Comput Struct Biotechnol J; 2015; 13():47-54. PubMed ID: 26900429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wireless Instantaneous Neurotransmitter Concentration System: electrochemical monitoring of serotonin using fast-scan cyclic voltammetry--a proof-of-principle study.
    Griessenauer CJ; Chang SY; Tye SJ; Kimble CJ; Bennet KE; Garris PA; Lee KH
    J Neurosurg; 2010 Sep; 113(3):656-65. PubMed ID: 20415521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional Variations of Spontaneous, Transient Adenosine Release in Brain Slices.
    Lee ST; Venton BJ
    ACS Chem Neurosci; 2018 Mar; 9(3):505-513. PubMed ID: 29135225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presynaptic dopamine dynamics in striatal brain slices with fast-scan cyclic voltammetry.
    Maina FK; Khalid M; Apawu AK; Mathews TA
    J Vis Exp; 2012 Jan; (59):. PubMed ID: 22270035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a 32 μm diameter carbon fiber electrode for in vivo fast-scan cyclic voltammetry.
    Chadchankar H; Yavich L
    J Neurosci Methods; 2012 Nov; 211(2):218-26. PubMed ID: 22995525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Algorithm for Detection of Transient Adenosine Release.
    Borman RP; Wang Y; Nguyen MD; Ganesana M; Lee ST; Venton BJ
    ACS Chem Neurosci; 2017 Feb; 8(2):386-393. PubMed ID: 28196418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subsecond detection of guanosine using fast-scan cyclic voltammetry.
    Cryan MT; Ross AE
    Analyst; 2018 Dec; 144(1):249-257. PubMed ID: 30484441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amine-functionalized carbon-fiber microelectrodes for enhanced ATP detection with fast-scan cyclic voltammetry.
    Li Y; Weese ME; Cryan MT; Ross AE
    Anal Methods; 2021 May; 13(20):2320-2330. PubMed ID: 33960336
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.